TOSHIBA

SERUICE MANUAL MULTIFUNCTIONAL DIGITAL SYSTEMS

All rights reserved

GENERAL PRECAUTIONS REGARDING THE INSTALLATION AND SERVICE FOR e-STUDIO161

The installation and service should be done by a qualified service technician.

1. Transportation/Installation

- When transporting/installing the machine, employ two persons and be sure to use the positions as indicated below.
The machine is quite heavy and weighs approximately 30 kg (14.3 lb .), therefore pay full attention when handling it.

- Be sure to use a dedicated outlet with AC $110 \mathrm{~A}, 115 \mathrm{~V}$ or $127 \mathrm{~V} / 10 \mathrm{~A}, 220 \mathrm{~V}-240 \mathrm{~V}$ or $240 \mathrm{~V} / 5 \mathrm{~A}$) for its power source.
- The machine must be grounded for safety.

Never ground it to a gas pipe or a water pipe.

- Select a suitable place for installation.

Avoid excessive heat, high humidity, dust, vibration and direct sunlight.

- Also provide proper ventilation as the machine emits a slight amount of ozone.
- The socket-outlet shall be installed near the machine and shall be easily accessible.

2. Service of Machines

- Basically, be sure to turn the main switch off and unplug the power cord during service.
- Be sure not to touch high-temperature sections such as the exposure lamp, the fuser unit and their periphery.
- Be sure not to touch high-voltage sections such as the chargers and the high-voltage transformer. Especially, the board of these components should not be touched since the electric charge may remain in the capacitors, etc. on them even after the power is turned OFF.
- Be sure not to touch rotating/operating sections such as gears, belts, pulleys, fan, etc.
- Be careful when removing the covers since there might be the parts with very sharp edges underneath.
- When servicing the machines with the main switch turned on, be sure not to touch live sections and rotating/operating sections. Avoid exposure to laser radiation.
- Use suitable measuring instruments and tools.
- Avoid exposure to laser radiation during servicing.
- Avoid direct exposure to the beam.
- Do not insert tools, parts, etc. that are reflective into the path of the laser beam.
- Remove all watches, rings, bracelets, etc. that are reflective.
- Unplug the power cable and clean the area around the prongs of the plug once a year or more. A fire may occur when dust lies on this area.

3. Main Service Parts for Safety

- The breaker, door switch, fuse, thermostat, thermofuse, thermistor, etc. are particularly important for safety. Be sure to handle/install them properly. If these parts are shorted circuit and/or made their functions out, they may burn down, for instance, and may result in fatal accidents. Do not allow a short circuit to occur. Do not use the parts not recommended by Toshiba TEC Corporation.

4. Cautionary Labels

- During servicing, be sure to check the rating plate and the cautionary labels such as "Unplug the power cord during service", "Hot area", "Laser warning label" etc. to see if there is any dirt on their surface and whether they are properly stuck to the machine.

5. Disposition of Consumable Parts, Packing Materials

- Regarding the recovery and disposal of the machine, supplies, consumable parts, packing materials, follow the relevant local regulations or rules.

6. When parts are disassembled, reassembly is basically the reverse of disassembly unless otherwise noted in this manual or other related documents. Be careful not to reassemble small parts such as screws, washers, pins, E-rings, star washers in the wrong places.
7. Basically, the machine should not be operated with any parts removed or disassembled.

8. Precautions Against Static Electricity

- The PC board must be stored in an anti-electrostatic bag and handled carefully using a wristband, because the ICs on it may become damaged due to static electricity.
Caution: Before using the wristband, pull out the power cord plug of the machine and make sure that there are no uninsulated charged objects in the vicinity.

CAUTION

This product is a class 1 laser product that complies with 21CFR 1040.10 and 1040.11 of the CDRH standard and IEC825. This means that this machine does not produce hazardous laser radiation. The use of controls, adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.
This laser radiation is not a danger to the skin, but when an exact focusing of the laser beam is achieved on the eye's retina, there is the danger of spot damage to the retina.
The following cautions must be observed to avoid exposure of the laser beam to your eyes at the time of servicing.

1) When a problem in the laser optical unit has occurred, the whole optical unit must be exchanged as a unit, not as individual parts.
2) Do not look into the machine with the main switch turned on after removing the developer unit, toner cartridge, and drum cartridge.
3) Do not look into the laser beam exposure slit of the laser optical unit with the connector connected when removing and installing the optical system.
4) The middle frame contains the safety interlock switch.

Do not defeat the safety interlock by inserting wedges or other items into the switch slot.

Warning!

This product is a class A product.
If it is operated in households, offices or similar surroundings, it can produce radio interferences at other appliances, so that the user has to take adequate countermeasures.

CLASS 1 LASER PRODUCT

LASER KLASSE 1

LUOKAN 1 LASERLAITE

KLASS 1 LASERAPPARAT

CAUTION

INVIIIBLELASERRADIATION,
WHEN OPEN AND INTERLOCKS DEFEATED. AVOID EXPOSURE TO BEAM.

VORSICHT

unsichtbare Laserstrahlung, WENN ABDECKUNG GEÖFFNET UND SICHERHEITSVERRIEGELUNG ÜBERBRÜCKT. NICHT dem strahl aussetzen.

VAROITUS!

LAITTEEN KÄYTTÄMINEN MUULLA KUIN TÄSSÄ KÄYTTÖOHJEESSA MAINITULLA TAVALLA SAATTAA ALTISTAA KÄYTTÄJÄN TURVALLISUUSLUOKAN 1 YLITTÄVÄLLE NÄKYMÄTTÖMÄLLE LASERSÄTEILYLLE.

VARNING
OM APPARATEN ANVÄNDS PÅ ANNAT SÄTT ÄN I DENNA BRUKSANVISNING SPECIFICERATS, KAN ANVÄNDAREN UTSÄTTAS FÖR OSYNLIG LASERSTRÅLNING, SOM ÖVERSKRIDER GRÄNSEN FÖR LASERKLASS 1.

VARO! aVATtAESSA JA SUOJALUKITUS OHITETTAESSA OLET ALTTIINA NÄKYMÄדTTÖMÄLLE LASERSÄTEILYLLE ÄLÄ katso säteeseen.

ADVARSEL

usynlig Laserstrálning ved Âbning, nâr SIKKERHEDSBRYDERE ER UDE AF FUNKTION. UNDGĀ UDSAETTELSE FOR strấling.

VARNING!

OSYNLIG LASERSTRẢLNING NÄR DENNA DELÄR ÖPPNAD OCH SPÄRREN ÄR URKOPPLAD. BETRAKTA EJ STRÁLEN. - STRẢLEN ÄR FARLIG.

CONTENTS

[1] GENERAL

1. Note for servicing 1-1
[2] SPECIFICATIONS
2. Copy mode 2-1
[3] CONSUMABLE PARTS
3. Supply system table 3-1
4. Environmental conditions 3-2
5. Production number identification 3-2
[4] EXTERNAL VIEWS AND INTERNAL STRUCTURES
6. Appearance 4-1
7. Internal 4-1
8. Operation Section 4-2
9. Motor, solenoid, clutch 4-3
10. Sensor, switch 4-4
11. PWB unit 4-5
12. Cross sectional view 4-6
[5] UNPACKING AND INSTALLATION
13. Installing conditions. 5-1
14. Removal of protective material and fixing screw 5-1
15. Installing procedure 5-1
16. Removal and storage of fixing screw. 5-2
17. Changing a tray's paper size setting 5-3
[6] ADJUSTMENTS
18. Adjustment item list 6-1
19. Copier adjustment 6-1
[7] SIMULATIONS
20. Entering the simulation mode 7-1
21. Canceling the simulation mode 7-1
22. List of simulations 7-1
23. Contents of simulations 7-2
[8] USER PROGRAMS
24. List of user programs 8-1
25. Setting the user programs 8-3
[9] TROUBLE CODE LIST
26. Trouble code list 9-1
27. Details of trouble codes 9-1
[10] MAINTENANCE
28. Maintenance table 10-1
29. Maintenance display system 10-2
30. Note for replacement of consumable parts 10-2
[11] DISASSEMBLY AND ASSEMBLY
31. High voltage section / Duplex transport section 11-1
32. Optical section 11-2
33. Fusing section 11-4
34. Paper exit section 11-6
35. MCU 11-8
36. Optical frame unit 11-8
37. LSU 11-9
38. Tray paper feed section / Paper transport section 11-9
39. Manual multi paper feed section 11-11
40. Power section 11-13
41. Developing section 11-14
42. Process section 11-15
43. Others 11-15
[12] FLASH ROM VERSION UPGRADE PROCEDURE
44. Preparation 12-1
45. Download procedure 12-1
46. Installation procedure 12-2
[13] ELECTRICAL SECTION
47. Block diagram 13-1
48. Circuit descriptions 13-2
49. Actual wiring diagram 13-5
[14] OPTION MY-1022 (250 sheets paper feed unit)

[1] GENERAL

1. Note for servicing

Pictogram

The label ($\triangle \mathbb{\Delta}$) in the fusing area of the machine indicates the following:
\triangle : Caution, risk of danger
\triangle : Caution, hot surface

A. Warning for servicing

-The fusing area is hot. Exercise care in this area when removing misfed paper.
-Do not look directly at the light source. Doing so may damage your eyes.

B. Cautions for servicing

-Do not switch the machine rapidly on and off. After turning the machine off, wait 10 to 15 seconds before turning it back on.
-Machine power must be turned off before installing any supplies.
-Place the machine on a firm, level surface.
-Do not install the machine in a humid or dusty location.
-When the machine is not used for a long time, for example, during prolonged holidays, turn the power switch off and remove the power cord from the outlet.
-When moving the machine, be sure to turn the power switch off and remove the power cord from the outlet.
-Do not cover the machine with a dust cover, cloth or plastic film while the power is on. Doing so may prevent heat dissipation, damaging the machine.
-Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous laser radiation exposure.
-The socket-outlet shall be installed near the machine and shall be easily accessible.
-Be careful when removing the covers since there might be the parts with very sharp edges underneath.

C. Note for installation place

Improper installation may damage the machine. Please note the following during initial installation and whenever the machine is moved.

Caution : If the machine is moved from a cool place to a warm place, condensation may form inside the machine. Operation in this condition will cause poor copy quality and malfunctions. Leave the machine at room temperature for at least 2 hours before use.

Do not install your machine in areas that are:

-damp, humid, or very dusty

-exposed to direct sunlight

-subject to extreme temperature or humidity changes, e.g., near an air conditioner or heater.

The machine should be installed near an accessible power outlet for easy connection and disconnection.
Be sure to connect the power cord only to a power outlet that meets the specified voltage and current requirements. Also make certain the outlet is properly grounded.

Note : Connect the machine to a power outlet which is not used for other electric appliances. If a lighting fixture is connected to the same outlet, the light may flicker.

Be sure to allow the required space around the machine for servicing and proper ventilation.

[2] SPECIFICATIONS

1. Copy mode

A. Type

Type	Desk-top
Paper exit	Wing less

B. Machine composition

e-STUDIO161	16-CPM multi function model

(1) Option

Machine	Model	
250 sheets paper feed unit	MY-1022	
ADF	MR-2015	

C. Copy speed

(1) Scan One Print many

e-STUDIO161	Available

Condition: Copy speed in the normal copy from all the paper feed ports including the manual paper feed port.
(2) Continuous copy speed (Sheets/min)

Paper size		Normal	Enlargement (200%)	Reduction (50%)
AB system	A3	9	9	9
	B4	10	10	10
	A4	16	16	16
	A4R	12	12	12
	B5	16	16	16
	Inch			
system	LD	14	14	14
	LG	9	9	9
	$8.5 " X 13 "$	10	10	10
	LT	16	11	11
	LT-R	12	12	16
	ST	16	16	16

D. First copy time

(1) Basic speed

First copy time	l.2sec (A4, LT/1st tray/with OC) (Polygon motor ready state)

$7.2 \mathrm{sec}(\mathrm{A} 4, \mathrm{LT} / 1 \mathrm{st} \mathrm{tray} /$ with OC) (Polygon motor ready state)

E. Document

Max. document size	A3, LD
Document reference position	Left side center
Detection (Platen)	None
Detection size	A3, B4, A4, A4R, B5, B5R, A5 LD, LG, 8.5" X 13", LT, ST $(8.5 " ~ X ~$ $3^{\prime \prime}$ is detected by key input.)

(1) ADF

Standard/Option	Option : MR-2015
Document load capacity	40 sheets (Thickness 4mm or less)
Document size (Max. \sim Min.)	A3 ~ A5 LD ~ ST
Document replacement speed	16 sheets/min (A4 , LT normal copy)
Document set/Paper feed direction	Face up, Center reference, Paper feed from the top
Document weight	$56 \sim 90 \mathrm{~g} / \mathrm{m}^{2}, 15 \sim 21$ lbs
Document size detection	On the document feed tray
Document mixture	Not Available

F. Paper feed

Copy size (Max. \sim Min.)	A3 ~ A5, Post card LD ~ ST	
Paper feed system	1 cassette + Multi manual paper feed	
Paper feed capacity	250×1 (Paper feed tray) +100 (Multi bypass feed tray)	
Remaining quantity detection	Cassette section	Only empty detection available
	Manual tray	Only empty detection available

(1) Paper feed section of the copier

Paper feed size	A3, B4, A4, A4R, B5, B5R, A5, 16K, 16KR, 8K LD, LG, 8.5" x 13", LT, ST, (For A5 and ST, only No. 1 tray available.)
Side front	Front
Paper feed capacity	250 sheets $\left(56 \sim 90 \mathrm{~g} / \mathrm{m}^{2}\right.$ equivalent) $(15 \sim 21 \mathrm{lbs})$.
Weight	$56 \sim 90 \mathrm{~g} / \mathrm{m}^{2}(15 \mathrm{lbs} . \sim 21 \mathrm{lbs})$.
Special paper	Recycled paper

(2) Manual paper feed section

Paper feed size	A3 ~ A6, Post card, LD ~ ST
Paper feed capacity	100 sheets $\left(56 \sim 80 \mathrm{~g} / \mathrm{m}^{2}\right)$
Detection	Size detection not available
Weight	$56 \sim 200 \mathrm{~g} / \mathrm{m}^{2}(15 \sim 34$ lbs. $)$
Special paper	Recycled paper, OHP film, labels
Paper feed	Single except for recycled paper

(3) Option paper feed unit

	1-step paper feed unit
Model	MY-1022
Paper feed size	A3, B4, A4, A4R, B5, B5R LD, LG, 8.5" x 13", LT, ST
$\begin{aligned} & \text { Capacity } \\ & \left(56 \sim 80 \mathrm{gm}^{2}\right) \end{aligned}$	About 250 sheets x 1 step
Paper weight	$56 \sim 90 \mathrm{~g} / \mathrm{m}^{2}$ (15 ~ 21 lbs .)
Moisture preserving heater	None
Paper empty detection	Available
Paper size setting	User setting Paper size detection:None
External dimensions $(\mathrm{W} \times \mathrm{D} \times \mathrm{H})$	$590 \times 471 \times 88 \mathrm{~mm}$
Weight	About 4.7kg
Special paper	Recycled paper
Power	Supplied from the machine

Condition:With ADF A4/Letter Normal 1cassette

G. Multi copy

Max. number of multi copy
999 sheets

H. Warm-up time

Warm-up time	45 sec
Pre-heat	Available
Jam recovery	Within 45 sec

I. Copy magnification ratio

Fixed magnification ratio	AB system: $50,71,82,86,100,115,122,141,200 \%$
	Inch system:
$50,65,78,95,100,121,129,141,200 \%$	
Zooming	$25 \sim 400 \%$
	ADF (50 ~ 200\%)
Independent zooming(vertical)	Available $(25 \sim 400 \%)$ ADF(50 $\sim 200 \%)$
Independent zooming (horizontal)	Available $(25 \sim 400 \%)$ ADF(50 $\sim 200 \%)$

J. Print density

Density mode	Auto / Text / Photo
No. of manual adjustment	5 steps (Text / Photo)
Resolution	Writing: $600 \times 600 \mathrm{dpi}$ Reading: 600 (main) $\times 600$ (sub) (PHOTO mode) 600 (main) $\times 300$ (sub) (AE mode)
Gradation	Reading: 256 gradations Writing: Binary
Toner save mode	Set by the user program

K. Void width

Void area	Lead edge $1 \sim 4 \mathrm{~mm}$, rear edge 4 mm or less, both sides 4 mm or less
Image loss	4 mm or less

L. Paper exit / finishing

Paper exit section capacity	Face down 250 sheets
Full detection	None
Finishing	None

M. Additional functions

APS	O	
AMS	O	
Auto tray switching	O	
Memory copy	O	
Independent zooming	O	
1 set 2 copy	O	Enlargement invalid/ADF invalid (Patent rotation)
Black/white reverse	X	
Preheating	O	The conditions are set by the user program.
Auto shut-off	O	The conditions are set by the user program.
User programming	O	
Total counter	O	Supports Total counter, Scan counter, and Copy counter.
Coin vendor support	X	
Auditor support	X	
Toner save	O	
Department management	O	(Copy: 20 Dept.)
O Available N. Other specifications		

Photoconductor type	OPC (Organic Photo Conductor)
Photoconductor drum dia.	30 mm
Copy lamp	Cold cathode fluorescent lamp (CCFL)
Developing system	Dry 2-component magnetic brush development
Charging system	Saw teeth charging
Transfer system	(+) DC corotron
Separation system	(-) DC corotron
Fusing system	Heat roller
Process speed	$88 \mathrm{~mm} / \mathrm{s}$

O. Package form

Body	Body / Accessories

P. External view

External dimensions $(W \times D \times H)$	$590 \times 577 \times 470 \mathrm{~mm}$
Occupying area (W $\times \mathrm{D})$	$590 \times 531 \mathrm{~mm}$ (When the manual tray is installed.)
Weight	About 31.3 kg

Q. Power source

Voltage	AC100V, 110V, 120V, 127V, 230(240)V
Frequency	$50 / 60 \mathrm{~Hz}$ common

R. Power consumption

Max. power consumption	1200 W
EnergyStar conformity	
	Less than 550W
Power consumption when standby	5 W (Not include option)
Energy consumption efficiency	Less than 25W

S. Digital performance

Resolution	Reading	$600 \times 600 \mathrm{dpi}(\mathrm{PHOTO}$ mode) $600 \times 300 \mathrm{dpi}(\mathrm{AE}$ mode)
	Writing	$600 \times 600 \mathrm{dpi}$
Gradation	Reading	256 gradations
	Writing	Binary
Memory	16 MB	
Hard disk	None	

T. Printing function

Print speed	12 ppm
Data resolution	600 dpi
First print	7.2 sec
Duplex print	None
Paper feed system	Paper feed tray and Manual paper feed tray
Support OS	Windows 95/98/ME/2000/NT4.0/XP
Emulation	GDI
Interface	IEEE1284(ECP, Compatible)/USB1.1
PnP support	Support on Windows 95/98/ME/2000/XP
Software	Status monitor

[3] CONSUMABLE PARTS

1. Supply system table

A. USA / CANADA / Latin America

NO	Name	Content		Life	Product name	Remark
1	Toner cartridge(Black)	Toner (Toner: Net Weight 537g) Vinyl bag	$\begin{array}{r} \times 10 \\ \times 10 \end{array}$	160K	PS-ZT-1620	Life setting by A4 6\% document
2	Developer	Developer (Developer : Net Weight 400g)	$\times 10$	500K	PS-ZD-1620	
3	Drum kit	Drum Drum fixing plate	$\begin{aligned} & \times 10 \\ & \times 10 \end{aligned}$	500K	PS-OD-1620	

B. Europe / East Europe

NO	Name	Content	Life	Product name	Remark	
1	Toner cartridge(Black)	Toner (Toner: Net Weight 537g) Vinyl bag	x10	160 K	PS-ZT-1620E	Life setting by A4 6\% document
2	Developer	Developer (Developer : Net Weight 400g)	$x 10$	500 K	PS-ZD-1620	
3	Drum kit	Drum Drum fixing plate	x10 $x 10$	500 K	PS-OD-1620	

C. Asia / Oceania / Saudi Arabia

NO	Name	Content	Life	Product name	Remark	
1	Toner cartridge(Black)	Toner (Toner: Net Weight 537g) Vinyl bag	$\times 10$	160 K	PS-ZT-1620D	Life setting by A4 6\% document
2	Developer	Developer (Developer : Net Weight 400g)	$\times 10$	500 K	PS-ZD-1620	
3	Drum kit	Drum Drum fixing plate	$x 10$ $x 10$	500 K	PS-OD-1620	

2. Environmental conditions

A. Transport conditions
(1) Transport conditions

(2) Storage conditions

B. Use conditions

3. Production number identification
 <Toner cartridge>

The label on the toner cartridge shows the date of production.

<Drum cartridge>

The lot number, printed on the front side flange, is composed of 6 digits, each digit showing the following content:

1	2	3	4	5	6

1 Alphabet
Indicates the model conformity code. A for this model.
2 Number
Indicates the end digit of the production year.
3 Number or $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
Indicates the month of packing.
X stands for October, Y November, and Z December.
4/5 Number
Indicates the day of the month of packing.
6 Alphabet
Indicates the production factory. "A" for Nara Plant, "C" for SOCC

[4] EXTERNAL VIEWS AND INTERNAL STRUCTURES

1. Appearance

1	Document feeder cover (when the ADF is installed)/document cover	2	Document glass	3	Handles
4	Power switch	5	Operation panel	6	Paper output tray
7	Front cover	8	Paper trays	9	Side cover
10	Side cover handle	11	Bypass tray guides	12	Bypass tray
13	Bypass tray extension	14	Charger cleaner	15	USB 1.1 connector
16	Parallel connector				

2. Internal

17	Document feeder tray (when the ADF is installed)	18	Original guides (when the ADF is installed)	19	Feeding roller cover (when the ADF is installed)
20	Right side cover (when the ADF is installed)	21	Exit area (when the ADF is installed)		
23	Toner cartridge	24	Roller rotating knob	22	Toner cartridge lock release lever
26	Photoconductive drum	27	Fusing unit paper guide	25	Fusing unit release levers

3. Operation Section

1	AUDIT CLEAR key	2	INTERRUPT key / indicator	3	ORIGINAL SIZE ENTER key / ORIGINAL SIZE indicators					
4	AUTO PAPER SELECT indicator	5	PAPER SIZE ENTER key	6	Alarm indicators					
7	ADF indicator (when the ADF is installed)	8	ON LINE key/indicator	PAPER SIZE indicators						
10	TRAY SELECT key	11	Paper feed location / misfeed location indicators							

12	XY-ZOOM key/indicator	13	DUAL PAGE COPY key/indicator	14	ZOOM indicator
15	POWER SAVE indicator	16	Display	17	Copy ratio display key
18	Zoom keys	19	Numeric keys	20	RESET key
21	AUTO IMAGE key / indicator	22	PRESET RATIO selector keys / indicators	23	AUTO/TEXT/PHOTO key / indicators
24	Light and Dark keys / indicators	25	CLEAR STOP key	26	START key / indicator

4. Motor, solenoid, clutch

No.	Name	Code	
1	Mirror motor	MRM	Drives the optical mirror base (scanner unit).
2	Toner motor	TM	Toner supply
3	Cooling fan motor	CFM	Cools the inside of the machine.
4	Main motor	CPFC1	Drives the machine.
5	1st tray paper feed clutch	RRC	Drives the resist roller
6	PS clutch	CPSOL1	Solenoid for paper feed from cassette
7	Paper feed solenoid	RRS	Resist roller rotation control solenoid
8	Resist roller solenoid	MPTC	Drives the manual paper transport roller.
9	Manual paper transport clutch	MPFC	Drives the manual paper feed roller.
10	Manual paper feed clutch	MPFS	Manual paper feed solenoid
11	Manual paper feed solenoid	CPFC2	Drives the 2nd tray transport roller.
12	2nd tray transport clutch	FSOL1	2nd tray transport solenoid
13	2nd tray transport solenoid	CPFC1	Drives the 2nd tray paper feed roller.
14	2nd tray paper feed clutch	PSOL2	2nd tray transport solenoid
15	2nd tray paper feed solenoid	VFM	Cools the inside of the machine.
16	Exhaust fan motor		

5. Sensor, switch

No.	Name	Code	
1	Mirror home position sensor	MHPS	Detects the mirror (scanner unit) home postion operation
2	Side door switch	DSWR	Side door open detection
3	Paper exit sensor (paper exit side)	POD1	Detects paper exit.
4	Paper exit sensor	PDPX	Paper transport detection
5	Thermistor	RTH	Fusing section temperature detection
6	Thermostat		Fusing section abnormally high temperature detection
7	Toner density sensor	Toner quantity detection	
8	2nd tray detection switch	2nd tray detection	
9	Manual sensor	MPED	Manual transport detection
10	2nd tray door open/close sensor	DRS2	2nd tray door open/close detection
11	2nd tray door paper pass sensor	PPD2	2nd tray paper entry detection
12	2nd tray paper empty sensor	CSS2	2nd tray paper empty detection
13	Paper in sensor	PIN	Paper transport detection
14	Cassette empty		Tray paper entry detection
15	Front cover SW		Front cover open detection
16	Power switch	MAIN SW	Turns ON/OFF the main power source.

6. PWB unit

No. Name	Function operation	
1	Copy lamp Inverter PWB	Copy lamp control
2	I/ F PWB	USB1.1, IEEE1284 I/F
3	CCD sensor PWB	Image scanning
4	Main control PWB	Main control PWB
5	Tray PWB	Shifter motor control
6	2nd cassette PWB	2nd cassette control
7	High voltage PWB	High voltage control
8	Power PWB	AC power input/DC power control
9	Operation main PWB	Operation panel input/Display, operation panel section control

7. Cross sectional view

No.	Name	
1	Copy lamp	Image radiation lamp
2	Copy lamp unit	Operates in synchronization with No. $2 / 3$ mirror unit to radiate documents sequentially.
3	LSU unit	Converts image signals into laser beams to write on the drum.
4	Lens unit	Reads images with the lens and the CCD.
5	MC holder unit	Supplies negative charges evenly on the drum.
6	Paper exit roller	Used to discharge paper.
7	Transport roller	Used to transport paper.
8	Upper heat roller	Fuses toner on paper (with the teflon roller).
9	Lower heat roller	Fuses toner on paper (with the silicon rubber roller).
10	Waste toner transport roller	Transports waste toner to the waste toner box.
11	Drum unit	Forms images.
12	Transfer charger unit	Transfer images (on the drum) onto paper.
13	DUP follower roller	Transports paper for duplex.
14	Duplex transport roller	Takes synchronization between the paper lead edge and the image lead edge.
15	Resist roller	Manual paper feed tray
16	Manual paper feed tray	Picks up paper in manual paper feed.
17	Manual paper pick up roller	Reflects the images from the copy lamp unit to the lens unit.
18	No. 2/3 mirror unit	Transports paper from the manual paper feed port.
19	Manual transport roller	Transports paper from the 2nd tray.
20	2nd tray paper transport roller	Picks up paper from the 2nd tray.
21	2nd tray paper pick up roller (semi-circular roller)	Picks up paper from the 1st tray.
22	1st tray paper feed roller (semi-circular roller)	Puts toner on the OPC drum.
23	MG roller	

[5]UNPACKING AND INSTALLATION

1.Installing conditions

A.Copier installation

Do not install your copier in areas that are:
-damp, humid, or very dusty

- exposed to direct sunlight
-poorly ventilated
-subject to extreme temperature or humidity changes, e.g., near an air conditioner or heater.
-Be sure to allow the required space around the machine for servicing and proper ventilation.

B.Power source

-Use an exclusive-use power outlet. If the power plug of this machine is inserted into a power outlet commonly used with other illumination units, flickers of the lamp may be result. Use a power outlet which is not used commonly with any illumination units.
-Avoid complex wiring.

C.Grounding wire connection.

-To avoid danger, be sure to connect a grounding wire. If no grounding wire is connected and a leakage occurs, a fire or an electric shock may be result.

2.Removal of protective material and fixing screw

1) Remove all tapes and protective material.
-Remove all tapes, then open the document cover and remove the protective material of sheet shape
2) Remove the fixing screw.

- Use a coin to remove the fixing screw.
-The fixing screw is required when transporting the machine. Keep it in the tray. (Refer to the later description.)

3.Installing procedure

A.Developer cartridge installation

1) Open the front cover.
-Pull on the top center of the front cover to open.

2) Loosen the screw and remove the developer cartridge.

3) Remove the developer tank from the developer cartridge.

4) Supply developer into the developer tank while rotating the MG roller in the arrow direction.

* Shake the developer bag enough before opening it.

Note: Check that the DV seal is free from developing agent. If developing agent is attached to the DV seal, clean it carefully. Check to insure that the hook is engaged in two positions.
5) Attach the developer tank to the developer cartridge.

* After supplying developer into the developer cartridge, do not tilt or shake the developer cartridge.

6) Attach the developer cartridge to the copier, and fix it with the screw.

B.Toner cartridge installation

1) Shake the toner cartridge several times horizontally, and remove the tape.

* Do not hold the shutter lever when shaking.
* After removing the tape, do not tilt or shake the toner cartridge.

2) Attach the toner cartridge to the copier.

3) Pull the shutter lever.

Close the front cover A, then close the side cover B.
-When closing the front cover, gently press the both sides.
-When closing the side cover, hold the knob.
-When closing the covers, be sure to close the front cover first, then close the side cover. If closed in a wrong sequence, the covers may be broken.

4.Removal and storage of fixing screw

1) Lift the knob and gently pull out the tray.

2) Hold the paper pressure plate and turn the fixing screw in the arrow direction.

3) Store the fixing pin and the fixing screw in the tray.
-Store the fixing screw which was removed in the above procedure 2 and the fixing screw which was removed in procedure 2 of 2.
-Removal of protective material and fixing screw in the storage place in the tray.

5. Changing a tray's paper size setting

Follow these steps to change a tray's paper size setting.

Note:
-The paper size setting cannot be changed when the machine has stopped temporarily due to running out of paper or a misfeed, or during interrupt copying.
-During printing (even in copy mode), the paper size setting cannot be changed.
-A5 (ST) size paper can only be selected in upper paper tray.
-Do not load paper that is a different size than the paper size setting. Copying will not be possible.

1) Hold down the [PAPER SIZE ENTER] key for more than 5 seconds to set the selected paper size.
The currently selected paper feed location indicator will blink and the corresponding paper size (which is currently set) indicator will light steadily.
All other indicators will go out.

2) If the machine has two paper trays, use the [TRAY SELECT] key to select the paper tray for which you wish to change the paper size setting.
Each time the [TRAY SELECT] key is pressed, a paper tray will be indicated with a blinking paper feed location indicator.

3) Use the [ORIGINAL SIZE ENTER] key to select the paper size. The indicator of the selected paper size lights up.

4) Squeeze the lock lever of the front guide and slide the front guide to match the width of the paper, and move the left guide to the appropriate slot as marked on the tray.

-The front guide is a slide-type guide. Grasp the locking knob on the guide and slide the guide to the indicator line of the paper to be loaded. -The left guide is an insert-type guide. Remove it and then insert it at the indicator line of the paper to be loaded.
-When using LD sized paper store the left guide in the slot at the left front of the paper tray.

5) Press the [START] key and then the [PAPER SIZE ENTER] key. To change the paper size setting of another tray, repeat steps 2) to 5) after pressing the [START] key.

Note:Affix the paper size label for the paper size selected in step 3) to the label position on the right end of the tray.

Important points when using the printer mode

-Make sure that the tray's paper size setting is the same as the tray's paper size setting in the printer driver. For example, if the tray's paper size setting is A4R (LT-R), set "Setting Paper Size" to "A4-R". For more information, see "CONFIGURING THE PRINTER DRIVER" in the "Software Setup Guide".

[6]ADJUSTMENTS

1.Adjustment item list

Section		Adjustment item		Adjustment procedure/SIM No.
A	Process section	(1)	Developing doctor gap adjustment	Developing doctor gap adjustment
		(2)	MG roller main pole position adjustment	MG roller main pole position adjustment
		(3)	Developing bias voltage check	
		(4)	Main charger voltage check	
B	Mechanism section	(1)	Image position adjustment	SIM-50
		(2)	Main scanning direction (FR direction) distortion balance adjustment	No. 2/3 mirror base unit installing position adjustment
				Copy lamp unit installing position adjustment
		(3)	Main scanning direction (FR direction) distortion adjustment	Rail height adjustment
		(4)	Sub scanning direction (scanning direction) distortion adjustment	Winding pulley position adjustment
		(5)	Main scanning direction (FR direction) magnification ratio adjustment	SIM 48-1
		(6)	Sub scanning direction (scanning direction) magnification ratio adjustment	OC mode in copying (SIM 48-1)
				ADF mode in copying (SIM 48-5)
		(7)	Off center adjustment	OC mode (SIM 50-12)
				ADF mode (SIM 50-12)
		(8)	ADF white correction pixel position adjustment (required in an ADF model when replacing the lens unit)	SIM63-7
C	Image density adjustment	(1)	Copy mode	SIM 46-1

2.Copier adjustment

A.Process section

(1) Developing doctor gap adjustment

1) Loosen the developing doctor fixing screw A.
2) Insert a thickness gauge of 1.5 mm to the three positions at 20 mm and 130 mm from the both ends of the developing doctor as shown.

3) Push the developing doctor in the arrow direction, and tighten the developing doctor fixing screw. (Perform the same procedure for the front and the rear frames.)
4) Check the clearance of the developing doctor. If it is within the specified range, then fix the doctor fixing screw with screw lock.

* When inserting a thickness gauge, be careful not to scratch the developing doctor and the MG roller.

<Adjustment specification>

Developing doctor gap
Both ends (20 mm from the both ends) : $1.5_{-0.15}^{+0.1} \mathrm{~mm}$
C (Center) (150 mm from the both ends) :1.55 ${ }_{-0.2}^{+0.15} \mathrm{~mm}$

(2) MG roller main pole position adjustment

1) Remove and separate the waste toner box and put the developing unit on a flat surface.
2) Tie a string to a needle or a pin.
3) Hold the string and bring the needle close to the MG roller horizontally. (Do not use paper clip, which is too heavy to make a correct adjustment.) (Put the developing unit horizontally for this adjustment.)
4) Do not bring the needle into contact with the MG roller, but bring it to a position 2 or 3 mm apart from the MG roller. Mark the point on the MG roller which is on the extension line from the needle tip.
5) Measure the distance from the marking position to the top of the doctor plate of the developing unit to insure that it is 18 mm . If the distance is not within the specified range, loosen the fixing screw A of the main pole adjustment plate, and move the adjustment plate in the arrow direction to adjust.

(3)Developing bias voltage check

Note:Use a digital multi-meter with an internal resistance of $10 \mathrm{M} \Omega$ or more.

1) Set the digital multi-meter range to $D C 700 \mathrm{~V}$.
2) Put the test rod of the digital multi-meter on the developing bias voltage output check pin.
3) Turn on the power, execute SIM25-1.

<Specification>

Mode	Specification
Developing bias voltage	DC $-400 \pm 8 \mathrm{~V}$

(4) Grid bias voltage check

Note:Use a digital multi-meter with an internal resistance of $10 \mathrm{M} \Omega$ or more.

1) Set the digital multi-meter range to DC 700 V .
2) Put the test rod of the digital multi-meter on the grid bias voltage output check pin.
3) Turn on the power.
(The voltage is outputted in the grid bias High output mode during warming up, and in the grid bias Low output mode when warming up is completed.)

<Specification>

Mode	Specification
Grid bias LOW	DC $-400 \pm 8 \mathrm{~V}$
Grid bias HIGH	DC $-525 \pm 10 \mathrm{~V}$

B.Mechanism section

Note: If a jam error or paper empty occurs during copying in the adjustment by the simulation, the image data are not saved, and therefore recopying is required.

(1)Image position adjustment

a.OC image lead edge position adjustment (SIM 50-1)

Note: In advance to this adjustment, the sub scanning magnification ratio adjustment must be performed.

1) Set a scale on the OC table as shown below.

2) Make a copy.
3) Check the copy output. If necessary, perform the following adjustment procedures.
4) Execute SIM 50-1.
5) Set the OC lead edge position set value (Exposure display <<PHOTO>> ON) to [1]
The OC image scanning start position is shifted inside the document edge.
6) Set the main cassette lead edge void adjustment value (Exposure display \ll TEXT \gg ON) * to [1]
The lead edge void becomes the minimum.
7) Set the main cassette print start position value (Exposure display <<AUTO+MAIN CASSETTE LAMP>> ON) to [1] and make a copy. The print start position is shifted inside the document edge.

*The dimension varies depending on the model.
8) Measure the image loss R of the copied image. Enter the set value of the image scanning lead edge position (Exposure display <<PHOTO>> ON) again.
$\cdot 1$ step of the set value corresponds to about 0.1 mm shift.
-Calculate the set value from the formula below.
$R / 0.1(\mathrm{~mm})=$ Image loss set value
<R: Image loss measurement value (mm)>

* The scanning edge is set.
(A line may be printed by scanning the document edge.)

Example: $\quad 4 / 0.1=40=$ about 40
Note: If the set value is not obtained from the above formula, perform the fine adjustment.
9) Measure the distance H between the paper lead edge and the image print start position. Set the image print start position set value (Exposure display <<AUTO+MAIN CASSETTE LAMP>> ON) again.
$\cdot 1$ step of the set value corresponds to about 0.1 mm shift.
-Calculate the set value from the formula below.
$\mathrm{H} / 0.1(\mathrm{~mm})=$ Image print start position set value
<H: Print start position measurement value (mm)>

*Fit the print edge with the paper edge, and perform the lead edge adjustment.
Example: $\quad 5 / 0.1=50=$ about 50
Note:If the set value is not obtained from the above formula, perform the fine adjustment.
10) Set the lead edge void adjustment value (Exposure display <<TEXT>> ON)* again.
$\cdot 1$ step of the set value corresponds to about 0.1 mm shift.
-Calculate the set value from the formula below.
B/0.05 (mm) = Lead edge void adjustment value
<B: Lead edge void (mm)>

Example: When setting the lead edge void to 2.5 mm

$$
\text { :2.5 /0.05 = about } 50
$$

Note:If the set value is not obtained from the above formula, perform the fine adjustment.

* 2nd cassette lead edge void adjustment: Exposure display <<AUTO + TEXT + PHOTO>>
Multi bypass tray lead edge void adjustment: Exposure display <<TEXT + PHOTO>>

<Duplex mode adjustment>

OC 2nd print surface (Auto duplex) lead edge position adjustment: SIM50-19 <<PHOTO>>

* For the adjustment procedure, set to $S \rightarrow D$ mode before execution.

Note:Before performing the 2nd print surface lead edge position adjustment and the lead edge void adjustment, be sure to perform the 1 st print surface lead edge position adjustment in advance, and be sure to perform the $2 n d$ print surface lead edge position adjustment and then the lead edge void adjustment in this sequence.
<Adjustment specification>

Adjustment mode	SIM	LED	Set value	Spec value	$\begin{array}{r} \text { Set } \\ \text { range } \end{array}$
OC image lead edge position	$\begin{gathered} \text { SIM } \\ 50-1 \end{gathered}$	PHOTO	R/0.1	Lead edge void: 1-4mm Image loss: 3 mm or less	1 ~ 99
Main cassette print start position		$\begin{gathered} \text { AUTO } \\ + \\ \text { MAIN } \end{gathered}$	B/0.1		
2nd cassette print start position		AUTO + 2nd CASSETTE			
Multi bypass tray print start position		$\begin{gathered} \text { AUTO } \\ ++ \\ \text { MULTI } \end{gathered}$			
Lead edge void		TEXT	B/0.05		
OC 2nd print surface lead edge position adjustment	$\begin{gathered} \text { SIM } \\ 50-19^{*} \end{gathered}$	PHOTO	1 step: 0.1 mm shift		

* (Set to $S \rightarrow$ D mode for before execution)

b.ADF image lead edge position adjustment (SIM50-6)

1) Set a scale on the OC table as shown below.

Note:Since the printed copy is used as a test chart, put the scale in paralled with the edge lines.
2) Make a copy, Then use the copy output as an original to make an ADF copy again.
3) Check the copy output. If necessary, perform the following adjustment procedures.
4) Execute SIM 50-6.
5) Set the ADF lead edge position set value (Exposure display <<AUTO>> ON) so that the same image is obtained as that obtained in the previous $O C$ image lead edge position adjustment.
<Adjustment specification>

Adjustment mode	SIM	LED	Set value	Spec value	Set range
ADF image lead edge position (1st print surface)	SIM $50-6$	AUTO	1 step: 0.1 mm shift	Lead edge void: $1-4 \mathrm{~mm}$	$1 \sim 99$
(2nd print surface)		TEXT		Image loss: 3 mm or less	

c.Rear edge void adjustment (SIM50-1, SIM50-19)

1) Set a scale as shown in the figure below.

2) Set the document size to $A 4\left(8.5{ }^{\prime \prime} \times 11^{\prime \prime}\right)$, and make a copy at 100%.
3) If necessary, perform the following adjustment procedure.

4) Execute SIM 50-1 and set the density mode to AUTO + TEXT + PHOTO (Rear edge void).The currently set adjustment value is displayed.
5) Enter the set value and press the start key. The correction value is stored and a copy is made.

<Duplex mode adjustment>

* 1st print surface (auto duplex) rear edge void adjustment: SIM50-19 <<AUTO>>
* 2nd print surface (auto duplex) rear edge void adjustment: SIM50-19<<TEXT>>
* Set to $S \rightarrow \mathrm{D}$ mode before execution.

Note:Before performing the 2nd print surface rear edge void adjustment, be sure to perform the 2nd print surface lead edge position adjustment. Never reverse the sequence.
<Adjustment specification>

Mode	SIM	LED	Set value	Specifi- cation	Set range
Rear edge void	SIM $50-1$	AUTO + TEXT + PHOTO	1 step: 0.1 mm shift	4 mm or less	$1 \sim 99$

d. Paper off center adjustment (SIM50-10)

1) Set a test chart on the document table.
2) Select a paper feed port and make a copy. Compare the copy and the test chart. If necessary, perform the following adjustment procedure.
3) Execute SIM 50-10. After completion of warm-up, shading is performed and the currently set off center adjustment value of each paper feed port is displayed.
4) Enter the set value and press the start key. The correction value is stored and a copy is made.

e.Side edge void area adjustment (SIM26-43)

Note:Before performing this adjustment, be sure to check that the paper off center adjustment (SIM 50-10) is completed.

1) Set a test chart on the document table.
2) Select a paper feed port and make two copies. Compare the 2nd copy and the test chart. If necessary, perform the following adjustment procedure.

* The 1st copy does not show the void. Be sure to check the 2nd copy.

3) Execute SIM 26-43 and set the density mode to AUTO(right edge void) + TEXT (Left edge void).
The currently set adjustment value is displayed.
4) Enter the set value and press the start key. The correction value is stored.

<Adjustment specification>

ode	SIM	LED	Set value	Specifi- cation	Set range
Left edge void	SIM $26-43$	AUTO (right edge)	1 step: + + TEXT (left edge)	$0.5 \sim 4 \mathrm{~mm}$	$1 \sim 99$

* The void adjustment values on the right and the left must be the same.

(2) Main scanning direction(FR direction) distortion balance adjustment

1) Remove the OC glass and the right cabinet.

2) Loosen the copy lamp unit wire fixing screw.

3) Manually turn the mirror base drive pulley and bring No. $2 / 3$ mirror base unit into contact with the positioning plate. At that time, if the front frame side and the rear frame side of No. $2 / 3$ mirror base unit are brought into contact with the positioning plate at the same time, the mirror base unit parallelism is proper. If one of them is in contact with the positioning plate, perform the adjustment of 4).

4) Loosen the set screw of the scanner drive pulley which is not in contact with No. $2 / 3$ mirror base unit positioning plate.
5) Without moving the scanner drive pulley shaft, manually turn the scanner drive pulley until the positioning plate is brought into contact with No. $2 / 3$ mirror base unit, then fix the scanner drive pulley.

6) Put No. $2 / 3$ mirror base unit on the positioning plate again, push the projections on the front frame side and the rear frame side of the copy lamp unit to the corner frame, and tighten the wire fixing screw.

(3)Main scanning direction (FR direction) distortion adjustment

This adjustment must be performed in the following cases:
-When the mirror base drive wire is replaced.
-When the lamp unit, or No. $2 / 3$ mirror holder is replaced.
-When a copy as shown is made.

1) Set $A 3\left(11^{\prime \prime} \times 17^{\prime \prime}\right)$ white paper on the original table as shown below.

2) Open the original cover and make a normal (100\%) copy.
3) Measure the width of the black background at the lead edge and at the rear edge.

La: Lead edge black background width
Lb: Rear edge black background width

If the width (La) of the black background at the lead edge is equal that (Lb) at the rear edge, there is no need to execute the following procedures of 4) ~ 7).
4) Loosen the mirror base drive pulley fixing screw on the front frame side or on the rear frame side.

5)Tighten the mirror base drive pulley fixing screw.

<Adjustment specification>

$L a=L b$
6) Execute the main scanning direction (FR) distartion balance adjustment previously described in 2) again.

(4) Sub scanning direction (scanning direction) distortion adjustment

When there is no skew copy in the mirror base scanning direction and there is no horizontal error (right angle to the scanning direction), the adjustment can be made by adjusting the No. $2 / 3$ mirror base unit rail height.
Before performing this adjustment, be sure to perform the horizontal image distortion adjustment in the laser scanner section.
This adjustment must be performed in the following cases:
-When the mirror base wire is replaced.
-When the copy lamp unit or No. $2 / 3$ mirror unit is replaced.
-When the mirror unit rail is replaced or moved.
-When a following copy is made.

1) Making of a test sheet

Make test sheet by drawing parallel lines at 10 mm from the both ends of A3 (11" x 17") white paper as shown below. (These lines must be correctly parallel to each other.)

2) Make a normal (100\%) copy of the test sheet on A3 (11" x 17") paper. (Fit the paper edge with the glass holding plate edge.)
3) Measure the distances (La, Lb, Lc, Ld) at the four corners as shown below.

When $L a=L b$ and $L c=L d$, no need to perform the procedures 4) and 5).
4) Move the mirror base F rail position up and down (in the arrow direction) to adjust.

Note:If the rear side rail is used for the adjustment, the scanning position of the white balance sheet is shifted and "E7-04" may occur only when scanning with the ADF. Therefore it is advisable to use the front side rail for the adjustment.

- When La > Lb

Shift the mirror base B rail upward by the half of the difference of La-Lb.

- When La < Lb

Shift the mirror base B rail downward by the half of the difference of Lb-La.
Example: When $\mathrm{La}=12 \mathrm{~mm}$ and $\mathrm{Lb}=9 \mathrm{~mm}$, shift the mirror base B rail upward by 1.5 mm .

- When Lc > Ld

Shift the mirror base B rail downward by the half of the difference of Lc - Ld.

- When Lc < Ld

Shift the mirror base B rail downward by the half of the difference of Ld - Lc.

* When moving the mirror base rail, hold the mirror base rail with your hand.

<Adjustment specification>

$L a=L b, L c=L d$
5) After completion of adjustment, manually turn the mirror base drive pulley, scan the mirror base A and mirror base B fully, and check that the mirror bases are not in contact with each other.

* If the mirror base rail is moved extremely, the mirror base may be in contact with the frame or the original glass. Be careful to avoid this.

(5) Main scanning direction (FR direction) magnification ratio adjustment (SIM 48-1)

Note:Before performing this adjustment, be sure to check that the CCD unit is properly installed.

1) Put a scale on the original table as shown below.

2) Execute SIM 48-1.
3) After warm-up, shading is performed and the current set value of the main scanning direction magnification ratio is displayed on the display section in 2 digits.
4) Select the mode and press the start key again.
5) Manual correction mode (TEXT lamp ON) Enter the set value and press the start key. The set value is stored and a copy is made.

<Adjustment specification>

Note: A judgment must be made with 200 mm width, and must not be made with 100 mm width.

Mode	Specification	SIM	Set value	Set range
Main scanning	At normal:	SIM 48-1	Add 1:0.1\%	$1 \sim 99$
direction	$\pm 1.0 \%$		increase Reduce 1: magnification ratio	
		0.1\% decrease		

(6) Sub scanning direction (scanning direction) magnification ratio adjustment (SIM 48-1, SIM 48-5)

a. OC mode in copying (SIM48-1)

Note:Before performing this adjustment, be sure to check that the CCD unit is properly installed.

1) Put a scale on the original table as shown below, and make a normal (100\%) copy.
2) Compare the scale image and the actual image. If necessary, perform the following adjustment procedures.
3) Execute SIM 48-1.<<PHOTO>>
4) After warm-up, shading is performed and the current set value of the main scanning direction magnification ratio is displayed on the display section in 2 digits.
5) When the photo lamp is lighted by pressing the density selection key, the current magnification ratio correction value in the sub scanning direction is displayed in lower 2 digits of the display section.
6) Enter the set value and press the start key.

The set value is stored and a copy is made.
<Adjustment specification>

Mode	Specification	SIM	Set value	Set range
Sub scanning	Normal	SIM 48-1	Add 1:0.1\%	$1 \sim 99$
direction	$\pm 1.0 \%$	(PHOTO)	increase	
magnification			Reduce 1: ratio	
(OC mode)			 decrease	

b. ADF sub scanning direction magnification ratio (SIM48-5)

Note:
-Before performing this adjustment, be sure to check that the CCD unit is properly installed.
-Before performing this adjustment, the OC mode adjustment in copying must be completed.

1) Put a scale on the original table as shown below, and make a normal (100\%) copy to make a test chart.

Note:Since the printed copy is used as a test chart, put the scale in parallel with the edge lines.
2) Set the test chart on the ADF and make a normal (100\%) copy.
3) Compare the scale image and the actual image. If necessary, perform the following adjustment procedures.
4) Execute SIM 48-5.
5) After warm-up, shading is performed.

The auto density lamp lights up and the current front surface sub scanning direction magnification ratio correction value is displayed in two digits on the display section.
6) Enter the set value and press the start key.

The set value is stored and a copy is made.
7) Change the mode from the duplex original mode to the simplex original mode.
"MANUAL" lamp lights up and the current back surface sub scanning direction magnification ratio is displayed in two digits on the display section.
8) Enter the set value and press the start key.

The set value is stored and a copy is made.
<Adjustment specification>

Mode	Specification	SIM	Set value	Set range
Sub scanning	Normal	SIM 48-5	Add 1:0.1\%	$1 \sim 99$
direction	$\pm 1.0 \%$		increase Reduce 1:	
magnification			0.1% ratio	
(ADF mode)				

(7) Off center adjustment (SIM 50-12)

a. OC mode (SIM50-12)

1) Make a test chart as shown below and set it so that its center line is fit with the original guide center mark.

* To make a test chart, draw a line on A3 or 11 " $\times 17$ " paper at the center in the paper transport direction.

2) Make a normal copy from the manual paper feed tray, and compare the copy and the test chart.
If necessary, perform the following adjustment procedures.
3) Execute SIM 50-12.
4) After warm-up, shading is performed and the current set value of the off center adjustment is displayed on the display section in 2 digits.
5) Enter the set value and press the start key.

The set value is stored and a copy is made.
<Adjustment specification>

Mode	Specification	SIM	Set value	Set range
Original off center mode (OC mode)	Single:	Center $\pm 2.0 \mathrm{~mm}$	SIM 50-12 (AE lamp	Add 1: 0.1 mm shift
		ON)	to R side Reduce 1:	
			0.1mm shift to L side	

b. ADF original off-center adjustment (SIM50-12)

Note:Before performing this adjustment, be sure to check that the paper off center is properly adjusted.

1) Make a test chart for the center position adjustment and set it on the ADF.

<Adjustment specification>

Draw a line on a paper in the scanning direction.
2) Make a normal copy from the manual paper feed tray, and compare the copy and the original test chart. If necessary, perform the following adjustment procedures.
3) Execute SIM 50-12.
4) After warm-up, shading is performed and the current set value of the off center adjustment at each paper feed port is displayed on the display section in 2 digits.
5) Enter the set value and press the start key.

The set value is stored and a copy is made.

<Adjustment specification>

Mode	Specification	SIM	Set value	$\begin{gathered} \text { Set } \\ \text { range } \end{gathered}$
Original off center mode (ADF mode)	Single: Center $\pm 3.0 \mathrm{~mm}$ (TEXT lamp)	$\begin{array}{\|c\|} \hline \text { SIM } \\ 50-12 \end{array}$	Add 1: 0.1 mm shift to R side Reduce 1: 0.1 mm shift to L side	1 ~ 99
	Duplex: Center $\pm 3.5 \mathrm{~mm}$ (PHOTO lamp)			

(8) ADF white correction pixel position adjustment(SIM63-7) (required in an ADF model when replacing the lens unit)

1) Fully open the ADF.
2) Execute SIM 63-7.
3) When the operation panel displays "COMPLETE,"the adjustment is completed.
4) If the operation panel displays "ERROR,"perform the following measures.
-When the display is 0 :
Check that the ADF is open.
Check that the lamp is ON. (If the lamp is OFF, check the MCU connector.) Check that the CCD harness is properly inserted into the MCU connector.
-When the display is 281 or above:
5) Remove the table glass.
6) Remove the dark box.
7) Slide the lens unit toward the front side and attach it,then execute SIM.
-When the display is 143 or below:
8) Remove the table glass.
9) Remove the dark box.
10) Slide the lens unit toward the rear side and attach it,then execute SIM.

* When the lens unit is moved,execute the OC main scanning
magnification ratio auto adjustment,SIM 48-1-1,IM48-3 and the PF original off-center adjustment.
* This adjustment is basically O.K.with IM 63-7.

C.Image density adjustment

(1)Copy mode (SIM 46-1)

1) Set a test chart on the $O C$ table as shown below.

2) Put several sheets of $A 3$ or $11^{\prime \prime} \times 17^{\prime \prime}$ white paper on the test chart.
3) Execute SIM 46-1
4) After warm-up, shading is performed and the current set value of the density level is displayed on the display section in 2 digits. For mode selection, use the density select key.
5) Change the set value with the 10-key to adjust the copy image density.
6) Make a copy and check that the specification below is satisfied.
<Adjustment specification>

Density mode	Display lamp	Exposure level	Sharp Gray Chart output	Set value	Set range
Auto	Auto	-	"2" is slightly copied.	The greater the set value is the greater the	$1 \sim 99$
Text	Text	3	"3" is slightly copied.	"2" is slightly density is The smaller the set value is the smaller the copied.	
Photo	Photo	3	"3" is slightly copied	density is.	
Toner save	Text/ Photo	3	"2" is slightly copied		
Toner save	Auto/ Photo	-			

[7] SIMULATIONS

1. Entering the simulation mode

Perform the following procedure to enter the simulation mode.
"C" key \rightarrow AUTO/TEXT/PHOTO key \rightarrow
"C" key \rightarrow AUTO/TEXT/PHOTO key \rightarrow
Main code \rightarrow Start key \rightarrow Sub code \rightarrow Start key
(Note:Perform the first four key strokes quickly allowing no more than one second between key strokes.)

2. Canceling the simulation mode

When the clear all key is pressed, the simulation mode is cancelled.
When the interruption key is pressed, the process is interrupted and the screen returns to the sub code entering display.

* After canceling the simulation mode, be sure to turn OFF/ON the power and check the operation.

Note:If the machine is terminated by a jam error or paper empty during copying in the adjustment by the simulation, recopying is required.

3. List of simulations

Main code	$\begin{aligned} & \text { Sub } \\ & \text { code } \end{aligned}$	Contents
01	01	Mirror scanning operation
	02	Mirror home position sensor (MHPS) status display
	06	Mirror scanning operation aging
02	01	Auto document feeder (ADF) aging
	02	ADF sensor status display
	03	ADF motor operation check
	08	ADF paper feed solenoid operation check
	11	ADF PS release solenoid operation check
05	01	Operation panel display check
	02	Fusing lamp and cooling fan operation check
	03	Copy lamp lighting check
06	01	Paper feed solenoid operation check
	02	Resist roller solenoid operation check
	10	Cassette semi-circular roller cleaning
07	01	Warm-up display and aging with jam
	06	Intermittent aging
	08	Shifting with warm-up display
08	01	Developing bias output
	02	Main charger output (Grid = HIGH)
	03	Main charger output (Grid = LOW)
	06	Transfer charger output
10	-	Toner motor operation
14	-	Trouble cancel (except for U2)
16	-	U2 trouble cancel
20	01	Maintenance counter clear
21	01	Maintenance cycle setting
	02	Mini maintenance cycle setting
22	01	Maintenance counter display
	02	Maintenance preset display
	03	Jam memory display
	04	Jam total counter display
	05	Total counter display
	06	Developing counter display
	07	Mini maintenance preset display
	08	ADF counter display
	09	Paper feed counter display
	12	Drum counter display
	13	CRUM type display
	14	P-ROM version display
	15	Trouble memory display
	17	Copy counter display
	18	Printer counter display
	21	Scanner counter display
	22	ADF jam counter display

Main code	$\begin{aligned} & \text { Sub } \\ & \text { code } \end{aligned}$	Contents
24	01	Jam total counter clear
	02	Trouble memory clear
	04	ADF counter clear
	06	Paper feed counter clear
	07	Drum counter clear
	08	Copy counter clear
	09	Printer counter clear
	13	Scanner counter clear
	14	ADF jam total counter clear
	15	Scanner mode counter clear
25	01	Main motor operation check
	10	Polygon motor operation check
26	02	Size setting
	05	Count mode setting
	06	Destination setting
	07	Machine condition check (CPM)
	18	Toner save mode setting
	30	CE mark conformity control ON/OFF
	36	Cancel of stop at maintenance life over
	37	Cancel of stop at developer life over
	38	Cancel of stop at drum life over
	39	Memory capacity check
	42	Transfer ON/OFF timing control setting
	43	Side void amount setting
	51	Copy temporary stop function setting
30	01	Paper sensor status display
42	01	Developing counter clear
43	01	Fusing temperature setting
	12	Standby mode fusing fan rotation setting
	13	Fusing paper interval control allow/inhibit setting
44	34	Transfer current setting
	40	Setting of rotation time before toner supply
46	01	Copy density adjustment (300dpi)
	02	Copy density adjustment (600dpi)
	09	Copy exposure level adjustment, individual setting (Text) 300dpi
	10	Copy exposure level adjustment, individual setting (Text) 600dpi
	11	Copy exposure level adjustment, individual setting (Photo) 600dpi
	18	Image contrast adjustment (300dpi)
	19	Exposure mode setting (Gamma table setting/AE operation mode setting/ Photo image process setting)
	20	ADF exposure correction
	29	Image contrast adjustment (600dpi)
	30	AE limit setting
	31	Image sharpness adjustment
48	01	Main/sub scanning magnification ratio adjustment
	05	ADF mode sub scanning magnification ratio adjustment in copying
49	01	Flash ROM program writing mode
	12	Standby mode fusing fan RPM setting
50	01	Image lead edge adjustment
	06	Copy lead edge position adjustment (ADF)
	10	Paper off-center adjustment
	12	Document off-center adjustment
51	02	Resist amount adjustment
53	08	ADF scanning position automatic adjustment
61	03	HSYNC output check
63	01	Shading check
	07	ADDF automatic correction
64	01	Self print

4. Contents of simulations

Main code	$\begin{aligned} & \text { Sub } \\ & \text { code } \end{aligned}$	Contents	Details of operation	
01	01	Mirror scanning operation	When the [START] key is pressed, the home position is checked in the first place, and the mirror base performs A3 full scanning once at the set magnification ratio speed. During this scanning, the set magnification ratio is displayed. The mirror home position sensor status is displayed with the photoconductor cartridge replacement lamp. (The lamp lights up when the mirror is in the home position.) During scanning, the copy lamp lights up. When the [Interrupt] key is pressed, the operation is interrupted to go to the sub code input standby mode.	
	02	Mirror home position sensor (MHPS) status display	Used to monitor the mirror home position sensor. When the sensor is ON, the photoconductor cartridge replacement lamp is lighted. During that time, the display section displays the sub code. When the [Interrupt] key is pressed, the machine goes to the sub code input standby mode. (When the CA key is pressed, the simulation is terminated.)	
	06	Mirror scanning operation aging	When the [START] key is pressed, the mirror base performs A3 full scanning at the set magnification ratio speed. During scanning, the set magnification ratio is displayed. After 3 seconds, the mirror base performs full scanning again. During scanning, the set magnification ratio is displayed. * When the [START] key is pressed again, the ready lamp turns and remains off. The DV replacement/OPC drum cartridge replacement lamp displays the status of the mirror home position sensor. (The lamp lights up when the mirror is in the home position.) During aging, the copy lamp lights up. When the [Interrupt] key is pressed, the operation is interrupted if operating, and the machine goes into the sub code input standby mode.	
02	01	Auto document feeder (ADF) aging	When the [START] key is pressed, the set magnification ratio is acquired and document transport operation of single surface is performed in the case of ADF or document transport operation of duplex surfaces is performed. During operation, the LED on the display section corresponding to the selected magnification ratio lights up, and the magnification ratio is displayed on the 7 -seg display. When the [Interrupt] key is pressed at that time, the machine goes to the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.	
	02	ADF sensor status display	(In order to receive the sensor change notification, the load must be decreased.) The sensor status (ON/OFF) in the ADF can be checked with the following lamps. When a sensor detects paper, it turns on. The open/close detection sensor turns on when the machine is opened.	
			Display lamp	Sensor
			Toner supply lamp	ADF document set sensor
			Copier jam lamp	ADF document transport sensor
			The DV replacement/OPC drum cartridge replacement lamp	ADF unit (OC cover) open/close sensor
			Paper empty lamp	ADF paper exit sensor
			ADF jam lamp	ADF paper feed cover open/close senso
			Manual paper feed lamp	ADF paper length sensor 1
			Tray jam lamp	ADF paper length sensor 2
				ADF paper feed width sensor (small)
			TEXT lamp	ADF paper feed width sensor (middle)
				ADF paper feed width sensor (large)

When the [Interrupt] key is pressed, the machine goes to the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.
When the [START] key is pressed, the motor rotates for 10 sec at the speed corresponding to the set magnification ratio. When the [Interrupt] key is pressed, the machine stops operation and goes to the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.
The ADF paper feed solenoid (PSOL) is turned ON for 500 msec and OFF for 500 msec .
This operation is repeated 20 times.
After completion of the process, the machine goes to the sub code input standby mode.
When the [Interrupt] key is pressed during the process, the machine goes to the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.
The ADF PS release solenoid (CLH) is turned ON for 500 msec and OFF for 500 msec . This operation is repeated 20 times.
After completion of the process, the machine goes to the sub code input standby mode. When the [Interrupt] key is pressed during the process, the machine goes to the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.

Main code	$\begin{gathered} \text { Sub } \\ \text { code } \end{gathered}$	Contents	Details of operation
05	01	Operation panel display check	<<LED check mode (ALL ON/Individual ON)>> When the [START] key is pressed in the sub code input mode, all the LED's (including the 7 -seg lamps) are turned ON. After 5 sec of all ON, the machine goes to the sub code input standby mode. When the [Mode select] key is pressed during all ON, the lighting mode is shifted to the individual ON mode, where the LED's are individually lighted from the left top, to the left bottom, to the next line top, to the bottom, and so on. (For the 7 -seg lamps, the 3-digit lamps are lighted at once.) After completion of lighting of all the lamps, the mode is shifted to the all ON mode. After 5 sec of all ON mode, the machine goes to the sub code input standby mode. Individual ON mode cycle: 300 ms for ON 20 ms for OFF When the [Interrupt] key is pressed in the LCD check mode, the machine goes back to the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated. When the [START] key is pressed with all the lamps ON, the machine goes back to the key input check mode. << Key input check mode>> When the machine goes into the key input check mode, [---] is displayed on the copy quantity display. Every time when a key on the operation panel is pressed, the input value is added on the copy quantity display. $[--] \rightarrow[1] \rightarrow[2] \rightarrow \cdots .$ When a key is pressed once, it is not counted again. When the [START] key is pressed, the input number is added and displayed for 3 sec , and the machine goes into the LED lighting check mode (LED all ON state). When the [Interrupt] key is pressed for the first time, it is counted. When the key is pressed for the second time, the machine goes into the sub code input mode. When the [CA] key is pressed for the first time, it is counted. When the key is pressed for the second time, the simulation is terminated. (Note for the key input check mode). -Press the [START] key at the end. (When the key is pressed during the process, the machine goes into the LED lighting check mode (all ON state).). - When two or more keys are pressed simultaneously, they are ignored.
	02	Fusing lamp and cooling fan operation check	When the [START] key is pressed, the fusing lamp turns ON for 500 ms and OFF for 500 ms . The operation is repeated 5 times. During this process, the cooling fan motor rotates. After completion of the process, the machine goes into the sub code input standby mode.
	03	Copy lamp lighting check	When the [START] key is pressed, the copy lamp lights up for 5 sec . After completion of lighting, the machine goes into the sub code input mode. When the [Interrupt] key is pressed, the process is interrupted and the machine goes into the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.
06	01	Paper feed solenoid operation check	When this simulation is executed, the sub code is displayed on the 7 -seg LED and the lamp corresponding to the solenoid lights up. Select a solenoid with the tray select key (the lamp corresponding to the solenoid lights up) and press the [START] key, and the machine repeats operation of ON for 500 ms and OFF for 500 ms . This operation is repeated 20 times. After that, the machine goes into the sub code entry standby mode. When [INTERRUPT] key is pressed during the process, the machine goes into the sub code input standby mode. When [CA] key is pressed, the simulation is terminated.
			Display lamp Solenoid
			Main cassette lamp Main cassette paper feed solenoid 2nd cassette lamp $* 2 n d$ cassette paper feed solenoid Manual paper feed lamp Manual paper feed solenoid 2nd cassette jam lamp $*$ 2nd cassette paper transport solenoid
			* Supported for the installed models only. Skipped for the models without installation. When the [START] key is pressed in the sub code input state, the resist solenoid (RRS) turns ON for 500 ms and OFF for 500 ms . This operation is repeated 20 times. After completion of the process, the machine goes into the sub code input standby mode. When [INTERRUPT] key is pressed during the process, the machine goes into the sub code input standby mode. When [CA] key is pressed, the simulation is terminated.
	02	Resist roller solenoid operation check	
	10	Cassette semi-circular roller cleaning	First of all, remove the developer unit. Enter the simulation code, specify the cassette to be cleaned with the tray select key, and press START button. The main motor rotates to move the cassette semi-circular roller by half circle and make the roller face downward. After completion of cleaning, when INTERRUPT key is pressed, the machine goes into the sub code entry standby mode and the roller returns to the original positions. To clean another roller continuously, press INTERRUPT key to return the roller to the original position, and execute the simulation again. During the operation, the sub code is displayed on the display. * When CA key is pressed, the simulation mode is terminated. However, the roller returns to the original position by the initial operation.

Main code	Sub code	Contents		Details of operation
07	01	Warm-up display and aging with jam	Copying is repeated to make the set copy quantity. When this simulation is executed, warm-up is started and warm-up time is counted up every second from 0 and displayed. After completion of warm-up, warm-up time count is stopped. When the [CA] key is pressed, the ready lamp lights up. After that, when the copy quantity is inputted with keys and the [START] key is pressed, copying is repeated to make the set copy quantity. (Intermittent 0 sec) This simulation is canceled by turning off the power or performing a simulation that executes hardware reset.	

| Main
 code | Sub
 code | Contents | |
| :---: | :---: | :--- | :--- | :--- |
| 22 | 01 | Maintenance counter display | The maintenance counter value is displayed. (Alternate display by 3 digits) |
| 02 | Maintenance preset display (Valid
 only when the destination is set to
 EX Japan) | The copy quantity corresponding to the code that is set with SIM21-01 is displayed.
 (For example: 50,000 sheets) | |
| 03 | Jam memory display | The LED of the latest jam position is lighted. Every time when the magnification ratio display key is
 pressed, the jam memory data is acquired sequentially from the latest. The jam position is judged by
 the acquired data and the corresponding LED is lighted. The 7-seg display indicates the jam number.
 At that time, "A" is displayed on the upper first digit. When the last one is displayed, the latest one will
 be displayed again. Max. 30 jams from the latest are stored. When the [Interrupt] key is pressed, the
 machine goes into the sub code input standby mode. When the [CA] key is pressed, the simulation is
 terminated. | |
| The jam total counter value is displayed. (Alternate display by 3 digits) | | | |

Main code	Sub code	Contents	Details of operation				
22	22	ADF jam counter display	The ADF jam counter value is displayed. (Alternate display by 3 digits)When the [Interrupt] key is pressed, the machine goes into the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.				
24	01	Jam total counter clear	When the [START] key is pressed, the jam total count value is reset to zero, and zero is displayed.				
	02	Trouble memory clear	The trouble memory and the EEPROM trouble history data are cleared and "000" is displayed on the 7-seg display. When the [Interrupt] key is pressed, the machine goes into the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.				
	04	ADF counter clear	When the [START] key is pressed, the ADF count value is reset to zero and displayed on the 7-seg display. When the [Interrupt] key is pressed, the machine goes into the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.				
	06	Paper feed counter clear	The paper feed counter data of each paper feed section is cleared, and "000" is displayed on the 7seg display. When the [Interrupt] key is pressed, the machine goes into the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.				
	07	Drum counter clear	When the [START] key is pressed, the drum count and the drum roasting time are reset to zero, and the drum counter value is displayed on the 7-seg LED. When the [Interrupt] key is pressed, the machine goes into the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.				
	08	Copy counter clear	When the [START] key is pressed, the copy count value is reset to zero and displayed on the 7-seg display. When the [Interrupt] key is pressed, the machine goes into the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.				
	09	Printer counter clear	When the [START] key is pressed, the printer count value is reset to zero and displayed on the 7 -seg display. When the [Interrupt] key is pressed, the machine goes into the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.				
	13	Scanner counter clear	When the [START] key is pressed, the scanner count value is reset to zero and displayed on the 7seg display. When the [Interrupt] key is pressed, the machine goes into the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.				
	14	ADF jam total counter clear	When the [START] key is pressed, the ADF jam total count value is reset to zero and displayed on the 7 -seg display. When the [Interrupt] key is pressed, the machine goes into the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.				
	15	Scanner mode counter clear	When the [START] key is pressed, the scanner mode count value is reset to zero and displayed on the 7-seg display. When the [Interrupt] key is pressed, the machine goes into the sub code input standby mode. When the [CA] key is pressed, the simulation is terminated.				
25	01	Main motor operation check (Cooling fan motor rotation check)	When the [START] key is pressed, the main motor (together with the duplex motor for the duplex model) is driven for 30 sec . At that time, to save toner consumption, if the developing until is installed, the developing bias, the main charger, and the grid are outputted. Since, in that case, laser discharge is required when the motor stops, the polygon motor is driven simultaneously. Check if the developing unit is installed or not. If it is not installed, the above high voltage is not outputted and only the motor is rotated. After completion of 30 sec operation, the machine goes into the sub code input standby mode. * This simulation must not be executed by forcibly turning on the door open/close switch.				
	10	Polygon motor operation check	When the [START] key is pressed, the polygon motor is rotated for 30 sec . After completion of 30 sec operation, the machine goes into the sub code input standby mode.				
26	02	Size setting	Used to set Enable/Disable of the FC (8.5" $\times 13^{\prime \prime}$) size detection.				
			Code number Setting				
			0 FC detection Disable * Default except for the following 1 FC detection Enable * Default only for SCA/Philippines				
			Detection size when a document of the FC (8.5 " $\times 13$ ") size is used				
			Unit to be used	Destination	Document size	Setting	
						0 (Disable)	1 (Enable)
			Document ADF	EX Japan AB series (FC)	FC (8.5" $\times 13$ ")	B4	FC (8.5" $\times 13$ ")
					B4	B4	FC (8.5" x 13")
				Inch series (FC)	FC (8.5" x 13")	LG (8.5" x 14")	FC (8.5" $\times 13$ ")
					LG (8.5" x 14")	LG (8.5" x 14")	FC (8.5" x 13")
			-For the other destinations, this setting is disabled.				

$\begin{array}{\|l\|} \hline \text { Main } \\ \text { code } \end{array}$	$\begin{array}{\|c\|} \hline \text { Sub } \\ \text { code } \end{array}$	Contents	Details of operation	
43	01	Fusing temperature setting (During normal copy)	When the simulation is terminated, the current set value is displayed. When the [\%] key is pressed, the setting is changed. When the [START] key is pressed, the set content is written into the EEPROM and the machine goes into the sub code input standby mode.	
			Set temperature (${ }^{\circ} \mathrm{C}$)	Set temperature (${ }^{\circ} \mathrm{C}$)
			160	185
			165	190
			170 * Defaul	195
			175	200
			180	
	12	Standby mode fusing fan rotation setting	When this simulation is executed, the current set code number is displayed. Enter the desired code number and press the [START] key to set the code number.	
			Code number Setting	
			0 1	Low speed rotation High speed rotation $\quad{ }^{*}$ Default
	13	Fusing paper interval control allow/ inhibit setting	Used to set the paper feed timing of 21st and later page to A3 or WLT when multi copying or printing paper of narrow width. (A3 or WLT depends on the destination.) When this simulation is executed, the currently set code number is displayed. Enter a desired code number and press the [START] key, and the entered code number is written into the EEPROM and the machine goes into the sub code entry standby mode.	
			Code number \quad Setting	
			0 Inhibit 1 Allow	* Default
			<Applicable paper> 1) Cassette paper feed: A4R, B5R, $8-1 / 2^{\prime \prime} X 14{ }^{\prime \prime}, 8-1 / 2^{\prime \prime} \times 13^{\prime \prime}, 8-1 / 2^{\prime \prime} \times 11^{\prime \prime}$, A5, INV 2) Manual paper feed: A4R, B5R, 8-1/2" X 14", 8-1/2" X 13", $8-1 / 2^{\prime \prime} \times 11^{\prime \prime}$, A5, INV, $16 K R$ * A5 size for manual paper feed is valid only for $E X$ Japan $A B$ series.	
44	34	Transfer current setting	Used to set the transfer current for the front surface and that for the back surface. When this simulation is executed, the current set value is displayed on the 7 -seg display. Select the set value with the zoom (Up/Down) keys and press the [START] key, and the set content is written into the EEPROM and the machine goes into the sub code input standby mode. Press the [Mode select] key to select each setting mode. At that time, the setup content is written into the EEPROM. The set range is $90 \mathrm{uA} \sim 360 \mathrm{uA}$ in the increment of 10 uA .	
			Display lamp	Setting mode
			AE mode lamp AE mode lamp \& PHOTO mode lamp AE \& TEXT \& PHOTO mode lamps	Normal size width: Front Small size width: Front Manual paper feed
			* Small size paper must be Letter R (A4R) or smaller. * For the special size of tray, use the normal size width.	
	40	Setting of rotation time before toner supply	Used to set the time interval between start of rotation (ready) of the main motor and start of toner supply in previous rotation after supplying the power. [1] ~ [99] (Default [8], unit: sec)	
46	01	Copy density adjustment (300dpi)	Used to set the copy density for each mode. (Operating procedure) When this simulation is executed, warm-up and shading are operated, and the current set value is displayed in two digits. (Default [50]) * The density LED is not lighted. Change the set value and press the [START] key, and a copy is made according to the set value. The greater the set value is, the darker the density is, and vise versa. In this case, only a copy at Exp. 3 can be made. When, however, the density is set darker, Exp. 1 and Exp. 5 become darker, too. If the dentistry is set lighter, Exp. 1 and Exp. 5 become lighter, too. To select a desired copy mode, press the [Copy mode select] key. The selected copy mode set value is displayed on the copy quantity display. (Adjustment range: 1 ~ 99)	
			Display lamp	Copy mode
			AE mode lamp TEXT mode lamp PHOTO mode lamp TEXT mode lamp \& PHOTO mode lamp AE mode lamp \& PHOTO mode lamp	AE mode (300dpi) TEXT mode (300dpi) PHOTO mode TS mode (TEXT) (300dpi) TS mode (AE) (300dpi)

Main code	$\begin{aligned} & \text { Sub } \\ & \text { code } \end{aligned}$	Contents	Details of operation	
46	02	Copy density adjustment (600dpi)	Used to set the copy density for each mode. (Operating procedure) When this simulation is executed, warm-up and shading are operated, and the current set value is displayed in two digits. (Default [50])Change the set value and press the [START] key, and a copy is made according to the set value. The greater the set value is, the darker the density is, and vise versa. In this case, only a copy at Exp. 3 can be made. When, however, the density is set darker, Exp. 1 and Exp. 5 become darker, too. If the dentistry is set lighter, Exp. 1 and Exp. 5 become lighter, too. To select a desired copy mode, press the [Copy mode select] key. The selected copy mode set value is displayed on the copy quantity display. (Adjustment range: 1 ~ 99)	
	09	Copy exposure level adjustment, individual setting (Text) 300dpi	Used to adjust the shift amount and the inclination value for each density level ($1 \sim 5$) when the exposure mode is the TEXT mode (including TS) -The shift amount is the same as the gamma (gradation), and is used to set the overall brightness. When the shift amount is increased, the overall brightness is decreased. When the shift amount is decreased, the overall brightness is increased -The inclination value changes the gamma (gradation). When the set value is increased, the gamma is increased to increase the contrast. (Clearer black and white images) When the set value is decreased, the gamma is decreased to decrease the contrast. (Increased gradation) * Press the [\%] key to switch between the shift amount and the inclination value. The 7-seg display shows the mode. The initial display is "Shift. Shift is indicated as "b" (Brightness). Inclination is indicated as "c" (Contrast). (Example) $[\mathrm{b} 50] \rightarrow[\% \mathrm{~T}]$ key $\rightarrow[\mathrm{c} 50] \rightarrow[\%]$ key $\rightarrow[\mathrm{b} 50] \rightarrow[\%]$ key $\rightarrow[\mathrm{c} 50] \rightarrow \cdots$ Select the adjustment level with the [Density adjust] key. The density LED displays the selected level (Exp. 1 ~ Exp. 5) * Select TEXT or TEXT (TS) with the [Mode select] key.	
			TEXT mode lamp TEXT mode lamp \& PHOT mode lamp	TEXT mode TEXT (TS) mode
			* Change the shift amount and the inclin The set range is [1] ~ [99]. The default is [5 Change the set value and press the [START]	value with the 10 -key. and a copy is made at the set value.

$\begin{array}{\|l\|} \hline \text { Main } \\ \text { code } \end{array}$	Sub code	Contents	Details of operation	
46	20	ADF exposure correction	Used to adjust the exposure correction amount in the ADF mode (for the OC mode). (Operating procedure) When this simulation is executed, the current set value is displayed. Enter the adjustment value with the 10-key and press the [START] key. The entered set value is stored and a copy is made. When the [INTERRUPT] key is pressed, the entered value is saved and the machine goes into the sub code entry standby mode. When the [CA] key is pressed, the entered value is saved and the simulation is terminated. [1] ~ [99] (Center [50]) * The greater the set value is, the darker the density is. The smaller the set value is, the lighter the density is. * The exposure mode is TEXT fixed. The LED does not change, either. The exposure level can not be adjusted.	
	29	Image contrast adjustment (600dpi)	Used to adjust the contrast for each mode. (Operating procedure) When this simulation is executed, warm-up and shading are performed, and the current set value is displayed in two digits. (Default: 50) The density LED is not lighted. Change the set value and press the [START] key, and a copy is made according to the set value. The greater the set value is, the higher the contrast is. The smaller the set value is, the lower the contrast is. In this case, only a copy at Exp. 3 is made. However, the contrasts at Exp. 1 and Exp. 5 are also changed accordingly. To select a desired copy mode, press the [Copy mode select] key. The selected copy mode set value is displayed on the copy quantity display. (Adjustment range: 1 ~ 99)	
			AE mode lamp TEXT mode lamp PHOTO mode lamp TEXT mode lamp \& PHOTO mode lamp AE mode lamp \& PHOTO mode lamp	AE mode (600dpi) TEXT mode (600dpi) PHOTO mode TS mode (TEXT) (600dpi) TS mode (AE) (600dpi)
	30	AE limit setting	Used to set the AE and the limit value at AE (toner save). The set range is $0 \sim 31$. The default is 0 . Change the setting and press the [START] key, and it will be written into the EEPROM and the machine will go into the sub code input standby mode. When the [Copy mode select] key is pressed, the machine goes back to the gamma table setting mode.	
			Display lamp AE mode lamp AE mode lamp \$ PHOTO mode lamp	Setting mode
				Limit value for AE Limit value for $A E$ (Toner save)
			<Remark> When SIM26-60 (Destination setting) and SIM46-19 (Auto exposure mode) are changed, this set content of this simulation is also changed to the default.	
	31	Image sharpness adjustment	Used to adjust clear/shading of image for each mode. (Operating procedure) When this simulation is executed, warm-up and shading are performed, and the current set value is displayed in two digits. (Default: 1) Change the set value and press the [START] key, and a copy is made according to the set value.	
			Set value Image quality	
			0 Shading 1 Standard 2 Clear	*Default
			Use the [Copy mode select] key to select each copy mode. The code number of the selected copy mode is displayed on the copy quantity display.	
			Display lamp	Copy mode
			AE mode lamp TEXT mode lamp PHOTO mode lamp TEXT mode lamp \& PHOTO mode lamp AE mode lamp \& PHOTO mode lamp	AE mode TEXT mode PHOTO mode TS mode (TEXT) TS mode (AE)

Main code	$\begin{gathered} \text { Sub } \\ \text { code } \end{gathered}$	Contents	Details of operation	
50	01	Image lead edge adjustment	Used to adjust the copy image position and the lead edge void amount on the copy paper. This adjustment is made by adjusting the image scan start position at 100% and the print start position (resist roller ON timing). (Operating procedure) When this simulation is executed, the current set value is displayed in two digits. (Center value: 50) When the copy mode select key is pressed, the setting mode and the display are switched. Enter the adjustment value with the 10-key and press the [START] key, and the entered value is set and a copy is made. (Adjustment range $1 \sim 99$) When the [INTERRUPT] key is pressed, the entered value is saved and the machine goes into the sub code entry standby mode. When the [CA] key is pressed, the entered value is saved and the simulation is terminated. When the adjustment is made with the main cassette paper feed, all the adjustment values at the paper feed ports become the same. (When the adjustment value is increased by 1 , the position is shifted by about 0.1 mm .)	
			Lighting lamp	Adjustment mode
			AE, Main cassette lamp AE, 2nd cassette lamp AE, Manual paper feed lamp TEXT lamp PHOTO lamp AE, TEXT, PHOTO lamp	Print start position (Main cassette paper feed) \star Print start position (2nd cassette paper feed) Print start position (Manual paper feed) Image lead edge void amount Image scan start position Image rear edge void amount

* The mark, " \star ", indicates that it is supported only for the installed model, and it is skipped for non-installed models.
Note:When printing is made with manual paper feed, use A3 paper.
When the adjustment value of the print start position is increased by 1 , the resist roller ON timing is delayed and the print image is reduced by 0.1 mm . When the adjustment value of the image scan start position is increased by 1 , the scan start position is shifted to the home position by 0.1 mm .

[Adjustment procedure]

(1) Set the print start position (A) (AE ON), the lead edge void amount (B) (TEXT ON), and the scan start position (C) (PHOTO ON) to <1>, and make a 100% copy.
(2) Measure the image loss (Rmm) of the scale. Set as $\mathrm{C}=10 \times \mathrm{R}(\mathrm{mm})$. (Example: Set to 40.) When the value of C is increased by 10 , the image loss is decreased by 1 mm . (Default: 50)
(3) Measure the distance between the paper lead edge and the image print start position. Set as $A=10 \times H$ (mm). (Example: Set to 50.)
When the value of A is increased by 10, the image lead edge is shifted toward the paper lead edge by 1 mm . (Default: 50)
(4) Set the lead edge void area as $\mathrm{B}=50$ (2.5 mm). (Default: 50)

When the value of B is increased by 10 , the void is increased by about 1 mm .
(For 25 or less, however, the void amount is zero.)
(Example)

Used to make the ADF copy lead edge position adjustment.

* When the adjustment value of the document scan start position is increased by 1 , the scan start timing is advanced by 0.1 mm . The print image is shifted to the reverse side of the scan start position.
(Adjustment range: 1 ~ 99, Default: 50)

<Adjustment items>

Lighting lamp	Item	Default	Variable range
AE	Front document scan position adjustment	50	$1 \sim 99$
TEXT	Back document scan position adjustment	50	$1 \sim 99$
PHOTO	Rear edge void adjustment (ADF)	50	$1 \sim 99$

Main code	$\begin{aligned} & \text { Sub } \\ & \text { code } \end{aligned}$	Contents	Details of operation
63	01	Shading check	The detection level of the white plate for shading is displayed. (Operating procedure) When the [START] key is pressed in the sub code input standby mode, the mirror base unit moves to the white plate for shading and the copy lamp is lighted. Until the light quantity of the copy lamp is stabilized, the sub code of "01" is displayed on the 7 -seg display. When the light quantity of the copy lamp is stabilized, it is revised every second, and the level of one pixel at the CCD center where no correction is made is detected for 10 sec , and the detected level is displayed in hexadecimal on the 7-seg display. After completion of 10 sec detection, the machine goes into the sub code input standby mode.
	07	ADF automatic correction	The ADF white correction start pixel position is automatically adjusted. This is performed after replacement of the lens. Open the ADF unit and press the [START] key, and the position (which pixel) of the white sheet for ADF exposure correction in the ADF position is displayed on the 7-seg display. If the value is $93 \sim 229$, it is displayed on the 7 -seg display and is written into the EEPROM. If the value is $0 \sim 92$ or $230 \sim 999$, it is displayed on the 7 -seg display but is not written into the EEPROM. If the value is 1000 or above, "-------" is displayed on the 7 -seg display and is not written into the EEPROM. The pixel position -34 written into the EEPROM is considered as the ADF white correction start pixel of the machine. When shi simulation is executed with the ADF unit closed, an error will occur.
64	01	Self print	The optical system status is ignored and a self print is made. Also when a print command is sent from the host, printing is performed. (Operating procedure) When this simulation is executed, warm-up is performed and the ready lamp is lighted. (However, the scanner is invalid and no initial operation is made.) Enter the code number with the 10-key, and select a cassette with the cassette select key and press the [START] key. The selected cassette start paper feed and printing is performed in the selected pattern. * Only the tray lamp and the online lamp are lighted, and no other lamps are lighted. Printing is made in 1 by 2 mode, where one line is printed and the following two liens are not printed, or in the grid pattern.
			Code number ${ }^{\text {Pattern }}$
			0 1 by 2 1 Grid pattern 2 White paper 3 Black background
			* Input disable for 4 ~ 99 * Print data are made on A3 size. (A3 paper is preferable.)

[8] USER PROGRAMS

The user programs allow the parameters of certain functions to be set, changed, or canceled as desired.

1. List of user programs

This copier has the following user programs.

[^0]| Program name | $\begin{gathered} \hline \text { Program } \\ \text { No } \end{gathered}$ | Description | Default | Parameters |
| :---: | :---: | :---: | :---: | :---: |
| Key auto repeat | | Use this setting to select whether or not holding down a key causes repeated input of the key. For keys that normally cause a set value to increase when held down (for example, holding down the [ZOOM] key), this program can be used to have the set value not change when the key is held down. | ON | 0 (OFF) |
| | | | | 1 (ON) |
| Key press time | 26 | Use this setting to select how long a key must be pressed for the input to be accepted. By selecting a longer time, you can prevent settings from being changed by the accidental pressing of a key. | Minimum (current response speed) | 1 (Minimum (current response speed)) |
| | | | | 2 (0.5sec) |
| | | | | 3 (1.0sec) |
| | | | | 4 (1.5sec) |
| | | | | 5 (2.0sec) |
| Audible signals volume | 27 | This sets the volume of beep signals. | short beep | 1 (short beep) |
| | | | | 2 (long beep) |
| | | | | 3 (OFF) |
| Base setting beep signal | 28 | Use this to sound a beep when a base setting is selected. | OFF | 0 (OFF) |
| | | | | 1 (ON) |
| Number of copies limit | 29 | Use this setting to select 99 or 999 for the maximum number of copies. | 999 copies | 1 (99 copies) |
| | | | | 2 (999 copies) |
| Use close paper size | 30 | When this function is enabled, printing in printer mode will automatically continue using a different size of paper if the specified size of paper runs out in all trays. This feature does not function in copy mode. | OFF | 0 (OFF) |
| | | | | 1 (ON) |
| Default tray setting | 31 | Use this program to select a default tray. This tray is automatically selected each time the power is turned on or each time the machine reverts to the initial settings. | Upper paper tray | 1 (Upper paper tray) *3 |
| | | | | 2 (Lower paper tray) *3 |
| | | | | 5 (Bypass tray) *3 |
| Default exposure mode | 32 | Use this program to set "AUTO", "TEXT", or "PHOTO" as the default exposure mode. | AUTO | 1 (AUTO) |
| | | | | 2 (TEXT) |
| | | | | 3 (PHOTO) |

*3 e-STUDIO161 is as follows:
1 : Paper tray (factory default)
5 : Bypass tray

2. Setting the user programs

1) Hold down the [Light] key (©) until the alarm indicators

-"- -" appears in the display.

2) Enter the program number with the numeric keys.
-See "USER PROGRAMS" for the program numbers.
-The selected program number blinks.
-To select "Auto clear timer", press the [1] key.

Note: If you enter the wrong number, press the [CLEAR] key (c) and then enter the correct number.
3) Press the [START] key ((2)).
-The selected program number stops blinking and lights steadily.
-The currently selected setting code blinks in the 1st digit of the display.

4) Enter the desired setting code by pressing a numeric key.
-For the setting codes, see "USER PROGRAMS".
-The selected setting code blinks.
-To select 90 seconds, press the [5] key.

Note: If you enter the wrong number, press the [CLEAR] key (C) and return to step 2).
5) Press the [START] key ((2)).
-The selected setting code stops blinking and lights steadily.

Note:To select a setting for another user program, press the [CLEAR] key (C) and then return o step 2).
6) Press the [Light] key (©) to complete the settings.
 returns to the number of copies display.

[9]TROUBLE CODE LIST

1.Trouble code list

Main code	Sub code	
E7	02	LSU trouble
	10	Shading trouble (Black correction)
	11	Shading trouble (White correction)
	12	Shading trouble
	16	Abnormal laser output
F5	02	Copy lamp lighting abnormality
H2	00	Thermistor open
H3	00	Heat roller high temperature detection
H4	00	Heat roller low temperature detection
L1	00	Scanner feed trouble
L3	00	Scanner return trouble
L4	01	Main motor lock detection
	11	Shifter motor trouble
L6	10	Polygon motor lock detection
L8	01	No full wave signal
U2	04	EEPROM read/write error (serial communication error)
	11	Counter check sum error (EEPROM)
	12	Adjustment value check sum error (EEPROM)
--		Auditor NOT READY
CH ON	None	Side door open
CH Blink	None	Developing cartridge not installed

2.Details of trouble codes

Main code	$\begin{gathered} \text { Sub } \\ \text { code } \end{gathered}$		Details of trouble
E7	02	Content	LSU trouble
		Detail	The BD signal from the LSU cannot be detected in a certain cycle. (Always OFF or always ON)
		Cause	LSU connector or LSU harness defect or disconnection Polygon motor rotation abnormality Laser beams are not generated. MCU PWB abnormality.
		Check and remedy	Check connection of the LSU connector. Execute SIM 61-03 to check the LSU operations. Check that the polygon motor rotates normally. Check that the laser emitting diode generates laser beams. Replace the LSU unit. Replace the MCU PWB.
	10	Content	Shading trouble (Black correction)
		Detail	The CCD black scan level is abnormal when the shading.
		Cause	Improper connection of the CCD unit flat cable CCD unit abnormality MCU PWB abnormality.
		Check and remedy	Check connection of the CCD unit flat cable. Check the CCD unit."
	11	Content	Shading trouble (White correction)
		Detail	The CCD white scan level is abnormal when the shading.
		Cause	Improper connection of the CCD unit flat cable Dirt on the mirror, the lens, and the reference white plate Copy lamp lighting abnormality CCD unit abnormality MCU PWB abnormality (When occurred in the ADF scan position.) Improper installation of the mirror unit
		Check and remedy	Clean the mirror, lens, and the reference white plate. Check the light quantity and lighting status of the copy lamp (SIM 05-03). Check the MCU PWB.
	12	Content	Shading trouble
		Detail	White correction is not completed in the specified number of operations.
		Cause	CCD unit flat cable connection failure. Dirt on mirrors, lenses, and the reference white plate. Copy lamp lighting abnormality CCD unit abnormality MCU PWB abnormality
		Check and remedy	Clean mirrors, lenses, and the reference white plate. Check the copy lamp light quantity (SIM 05-03) and lighting. Check the CCD unit. Check the MCU PWB.
	16	Content	Abnormal laser output
		Detail	When the laser output is stopped, HSYNC is detected.
		Cause	Laser abnormality MCU PWB abnormality.
		Check and remedy	Check the laser emitting diode operation. Replace the MCU PWB. "

Main code	$\begin{aligned} & \text { Sub } \\ & \text { code } \end{aligned}$		Details of trouble
F5	02	Content	Copy lamp lighting abnormality
		Detail	The copy lamp does not turn on.
		Cause	Copy lamp abnormality Copy lamp harness abnormality CCD PWB harness abnormality.
		Check and remedy	Use SIM 5-3 to check the copy lamp operations. When the copy lamp lights up. Check the harness and the connector between the CCD unit and the MCU PWB. When the copy lamp does not light up. Check the harness and the connector between the copy lamp unit and the MCU PWB. Replace the copy lamp unit. Replace the MCU PWB. "
H2	00	Content	Thermistor open
		Detail	The thermistor is open. The fusing unit is not installed.
		Cause	Thermistor abnormality Control PWB abnormality Fusing section connector disconnection The fusing unit is not installed.
		Check and remedy	Check the harness and the connector between the thermistor and the PWB. Use SIM 14 to clear the self diagnostic display.
H3	00	Content	Heat roller high temperature detection
		Detail	The fusing temperature exceeds $240{ }^{\circ}$.
		Cause	Thermistor abnormality Control PWB abnormality Fusing section connector disconnection.
		Check and remedy	Use SIM 5-02 to check the heater lamp blinking operation. When the lamp blinks normally. Check the thermistor and its harness. Check the thermistor input circuit on the control PWB. When the lamp keeps ON. Check the power PWB and the lamp control circuit on the MCU PWB. Use SIM 14 to clear the self diagnostic display.
H4	00	Content	Heat roller low temperature detection
		Detail	When the fusing temperature is lower than $150 \mathrm{C}^{\circ}$ after 55 sec from the start of warming up. When the warming up complete temperature is not reached in 30sec from reaching $150 \mathrm{C}^{\circ}$. When the fusing temperature is lower than $100 \mathrm{C}^{\circ}$ after 20 sec from ready start. When the fusing temperature is lower than $145 C^{\circ}$ when printing."
		Cause	Thermistor abnormality Heater lamp abnormality Thermostat abnormality Control PWB abnormality
		Check and remedy	Use SIM 5-02 to check the heater lamp blinking operation. When the lamp blinks normally. Check the thermistor and its harness. Check the thermistor input circuit on the control PWB. When the lamp does not light up. Check for disconnection of the heater lamp and the thermostat. Check the interlock switch. Check the power PWB and the lamp control circuit on the MCU PWB. Use SIM 14 to clear the self diagnostic display.

Main code	$\begin{aligned} & \text { Sub } \\ & \text { code } \end{aligned}$		Details of trouble
L1	00	Content	Scanner feed trouble
		Detail	The scanner does not complete feeding in the specified time.
		Cause	Mirror unit abnormality The scanner wire is disconnected. The origin detection sensor abnormality Mirror motor harness abnormality
		Check and remedy	Use SIM 1-1 to check the mirror reciprocating operations. When the mirror does not feed. Check for disconnection of the scanner wire. Check the harness and the connector between the mirror motor and the MCU PWB. Replace the mirror unit. Replace the MCU PWB. When the mirror does feed. Use SIM 1-2 to check the mirror home position sensor."
L3	00	Content	Scanner return trouble
		Detail	The scanner does not complete returning in the specified time. The mirror is not in the home position when OC copying is started with the mirror standby in the home position.
		Cause	Mirror unit abnormality Scanner wire disconnection Origin detection sensor abnormality Mirror motor harness abnormality
		Check and remedy	Use SIM 1-1 to check the mirror reciprocating operations. When the mirror does not return. Check for disconnection of the scanner wire. Check the harness and the connector between the mirror motor and the MCU PWB. Replace the mirror unit. Replace the MCU PWB. When the mirror does feed. Use SIM 1-2 to check the mirror home position sensor.

Main code	Sub code			
L4	01	Content		Main motor lock detection
:---				

Main code	$\begin{array}{\|c\|} \hline \text { Sub } \\ \text { code } \end{array}$		Details of trouble
U2	04	Content	EEPROM read/write error (Serial communication error)
		Detail	EEPROM access process error
		Cause	EEPROM abnormality
		Check and remedy	Check that the EEPROM is properly set. Use SIM 16 to cancel the trouble. Replace the MCU PWB.
	11	Content	Counter check sum error (EEPROM)
		Detail	Check sum error of the counter area in the EEPROM
		Cause	EEPROM abnormality
		Check and remedy	Check that the EEPROM is properly set. Use SIM 16 to cancel the trouble. Replace the MCU PWB.
	12	Content	Adjustment value check sum error (EEPROM)
		Detail	Check sum error of the adjustment value area in the EEPROM
		Cause	EEPROM abnormality
		Check and remedy	Check that the EEPROM is properly set. Use SIM 16 to cancel the trouble. Replace the MCU PWB.
--		Content	Auditor NOT READY
		Detail	
		Cause	
		Check and remedy	
$\begin{array}{\|l\|} \hline \mathrm{CH} \\ \mathrm{ON} \end{array}$	None	Content	Side door open
		Detail	The side door is open.
		Cause	Side door sensor abnormality MCU PWB abnormality
		Check and remedy	Check that all the side doors are closed. Replace the MCU PWB.
$\begin{gathered} \hline \mathrm{CH} \\ \text { Blink } \end{gathered}$	None	Content	Developing cartridge not installed
		Detail	The developing cartridge is not installed. Communication with the CRUM cannot be made in initial check of the CRUM.
		Cause	Developing unit disconnection MCU PWB abnormality CRUM chip abnormality
		Check and remedy	Check installation of the developing unit. Replace the MCU PWB.

[10] MAINTENANCE

1. Maintenance table

X:Check(Clean, adjust, or replace when required.) O:Clean \boldsymbol{A} :Replace \triangle :Adjust $\hat{*}$:Lubricate

*1:Recommendable replacement time:50K(Letter,5\%print)
2. Maintenance display system

Toner	Life	16K	
	Remaining quantity	NEAR EMPTY About 10\%	EMPTY
	LED	ON	Flash
	Machine	Operation allowed	Stop
Developer	Life	50K	
	LED	ON at 50 K of the developer count	
	Machine	Selection is available between Not Stop and Stop by Service Simulation (SIM 26- 37) Setup. (If Stop is selected, the LED will flash and stop at 50K.) * Default: Not Stop * Clear: SIM 42-1	
Maintenance	LED	Selection is available among $50 \mathrm{~K}, 25 \mathrm{~K}$, $10 \mathrm{~K}, 7.5 \mathrm{~K}, 5 \mathrm{~K}$, and free (no lighting) with SIM 21-1. Default: 50K Clear: SIM 20-1	
	Machine	Not stop	

3. Note for replacement of consumable parts

A. Toner cartridge

When a waste toner cartridge is removed from the machine, it must be put in a polyethylene bag to avoid scattering of toner.

B. DV cartridge

Do not shake or put up the developer cartridge. Otherwise developer may scatter.

C. DV seal attachment procedure

1) When attaching the DV side Mylar, check the position shown in the figure below and attach it properly.

2) When attaching the DV side sheet, check the position shown in the figure below and attach it properly.
(First of all, attach the DV side Mylar.)

* Be sure to attach the DV side sheet so that the notch is on the outside.

[11] DISASSEMBLY AND ASSEMBLY

WARNING Before performing the disassembly procedure, be sure to remove the power cord to prevent against an electric shock.

No.	Item
1	High voltage section/Duplex transport section
2	Optical section
3	Fusing section
4	Paper exit section
5	MCU
6	Optical frame unit
7	LSU
8	Tray paper feed section/Paper transport section
9	Manual multi paper feed section
10	Power section
11	Developing section
12	Process section
13	Others

1. High voltage section/Duplex transport section

No.	Content
A	Transfer charger unit
B	Charger wire
C	Duplex transport section

A. Transfer charger unit

B. Charger wire

Installation: The spring tip must be between two reference ribs. -The charger wire must be free from twist or bending. - Be sure to put the charger wire in the V groove.

C. Duplex transport section

2. Optical section

Note: When disassembling or assembling the optical unit, be careful not to touch the mirror and the reflector.

No.	Content
A	Copy lamp unit
B	Inverter PWB for copy lamp
C	Copy lamp
D	Lens unit
E	Wire

A. Copy lamp unit

Disassembly: Be sure to put No. $2 / 3$ mirror unit to the positioning plate (A).

Assembly:
Put the notched surface of wire holder (3) downward, tighten temporarily, and install.
Adjustment Main scanning direction distortion balance adjustment

B. Inverter PWB for copy lamp

C. Copy lamp

D. Lens unit

Note: Do not remove screws which are not indicated in the figure. If the height of the base plate is changed, it cannot be adjusted in the market.
Note: The CCD/lens unit is factory-adjusted before shipping.
Since these adjustments cannot be performed in the market. Never touch the screws other than screw 2) of the CCD/lens unit.

Lens unit attachment

$<1>$ Attach the lens unit so that the lens unit number on the lens adjustment plate is aligned with the scribe line on the base plate.

	CCD adjustment value
+4 scales	$5.0 \sim$
+3 scales	$3.6 \sim 4.9$
+2 scales	$2.2 \sim 3.5$
+1 scale	$0.8 \sim 2.1$
Reference	$-0.6 \sim 0.7$
-1 scale	$-2.0 \sim-0.7$
-2 scales	$-3.4 \sim-2.1$
-3 scales	$-4.8 \sim-3.5$
-4 scales	~-4.9

<2>Make a sample copy at the above position, and measure the magnification ratio.
$<3>$ Change the installing position in the horizontal direction to adjust the magnification ratio.
-When the copy image is longer than the original, shift to
the positive (+) direction.
-When the copy image is shorter than the original, shift to the negative (-) direction.

* 1 scale of the scribed line corresponds to 0.34% of magnification ratio.
* If this adjustment is not satisfactory, make a fine adjustment with SIM 48-2.

E. Wire

3. Fusing section

No.	Contents
A	Fusing unit
B	Thermostat
C	Thermistor
D	Heater lamp
E	Upper heat roller
F	Separation pawl
G	Lower heat roller
H	Separation pawl
I	Cleaning pad

A. Fusing unit removal

B. Thermostat

C. Thermistor

Installation: When installing the thermistor, be sure to face the installing projection (A) toward the installing surface. Check that the thermistor is in contact with the upper heat roller.

D. Heater lamp

Assembly: Insert the spring (A) into the hole (B) in the fusing frame.

Assembly: Put the paper guide earth spring (A) under the paper guide (B) before fusing.

Assembly: Put the fusing harness (A) on the heater lamp (B) as shown in the figure and fix them together. $<$ R $>$ Place the fusing harness inside the rib (C).

E. Upper heat roller

Disassembly: There are three pawls on the fusing cover. Remove the screws and slide the fusing cover to the right to remove. The heater lamp is fixed on the fusing cover with a screw. Slide the fusing cover to the front and remove the screw, then remove the heater lamp.

F. Separation pawl

G. Lower heat roller

Assembly: When installing the paper guide (3) before fusing, fix the paper guide fixing plate with screws temporarily so that the paper guide fixing plate (2) is in contact with the frame bottom under fusing (A). Set the paper guide (3) before fusing to the bottom line of the positioning reference (B), and tighten the screw firmly.

H. Separation pawl

I. Cleaning pad

How to clean paper dust on the fuser cleaning felt.

Remove Fusing rear paper guide from Fusing unit during every periodic maintenance (50K) and clean the collected paper dust using a ruler or other straight-edge device.
Replace the cleaning felt at 150 k or earlier if damaged.

4. Paper exit section

No.	Content
A	Ozone filter
B	Cooling fan
C	Paper exit unit
D	Paper exit sensor / duplex sensor
E	Transport roller
F	Paper exit roller
G	Paper exit interface P.W.B.

A. Ozone filter

B. Cooling fan

C. Paper exit unit

D. Paper exit sensor / duplex sensor
(A) Exit sensor
(B) Duplex sensor

E. Transport roller

F. Paper exit roller

Assembly:
Insert the spring pin so that the waveform (A) of the spring pin faces in the longitudinal direction of the paper exit drive gear long hole (B). $<R>B e$ sure to insert two ribs (C) into the groove (D).

G. Paper exit interface P.W.B.

5. MCU

No.		Content
A	MCU disassembly	

A. MCU disassembly

Note:When replacing the MCU PWB, be sure to replace the EEPROM of the MCU PWB to be replaced.

Note:When replacing the MCU PWB, be sure to restore the original jumper conditions.

6. Optical frame unit

No.		Content
A	Optical frame unit	

A. Optical frame unit

Installation: Install the optical unit in the sequence shown above.

7. LSU

No.		Content
A	LSU unit	

A. LSU unit

Note:Do not disassemble the LSU.
Note:When replacing the LSU, be careful not to touch the dust-shield glass.

Adjustment:
-Image lead edge position adjustment

- Image left edge position adjustment
-Paper off-center adjustment
-Size of the screwdriver for removing the LSU

8. Tray paper feed section/Paper transport section

No.	Content
A	Middle frame unit
B	Drive unit
C	Solenoid (paper feed solenoid,, resist roller solenoid)
D	Resist roller clutch / Resist roller
E	Paper feed clutch/Paper feed roller (Semi-circular roller)

A. Middle frame unit

Assembly: Do not miss the door lock pawl.

B. Drive unit

Assembly:
Move down the clutch pawl as shown below, and avoid the clutch and install.

C. Solenoid
(paper feed solenoid, resist roller solenoid)

9. Manual multi paper feed section

No.	Content
A	Manual transport roller/Manual paper feed roller
B	Manual multi paper feed
C	Manual feed solenoid
D	Manual transport clutch
E	Pressure plate unit
F	Manual paper feed clutch

A. Manual transport roller/Manual paper feed roller

Note:Push the lever at the right edge of the multi frame cover to the right upper side and remove it.

Installation: Be careful of the installing direction of the manual transport roller (6)
B. Manual multi paper feed

(2)

C. Manual feed solenoid

D. Manual transport clutch

F. Manual paper feed clutch

Note: Push the lever at the right edge of the multi frame cover to the right upper side and remove it.

10. Power section

No.	Content
A	Power unit
B	Power fan
C	High voltage P.W.B.
D	Power P.W.B.
E	Power switch

A. Power unit

B. Power fan

C. High voltage P.W.B.

D. Power P.W.B.

E. Power switch

11. Developing section

| No. | Contents |
| :---: | :--- | :--- |
| A | Developing box |
| B | Developing doctor |
| C | MG roller |

A. Developing box

B. Developing doctor

Adjustment: Developing doctor gap adjustment

C. MG roller

Adjustment: MG roller main pole position adjustment

Note:Attach it to fit with the attachment reference when replacing the DV blade.

12. Process section

No.	Contents
A	Drum unit
B	Main charger unit
C	Cleaning blade

A. Drum unit

B. Main charger unit

C. Cleaning blade

13. Others

No.	Contents
A	Operation P.W.B.
B	Tray interface P.W.B.
C	2nd tray paper entry sensor / Paper empty sensor
D	2nd tray paper feed solenoid / Transport solenoid
E	2nd tray transport clutch
F	2nd tray transport roller
G	2nd tray paper feed clutch
H	2nd tray paper feed roller
I	Main motor
J	I/F P.W.B.
K	Paper entry sensor
L	Paper empty sensor
M	Paper feed roller

A. Operation P.W.B.

C. 2nd tray paper entry sensor / Paper empty sensor

(3)

D. 2nd tray paper feed solenoid / Transport solenoid

E. 2nd tray transport clutch

F. 2nd tray transport roller

G. 2nd tray paper feed clutch

H. 2nd tray paper feed roller

I. Main motor

J. I/F P.W.B.

K. Paper entry sensor

L. Paper empty sensor

M. Paper feed roller

When removing the paper feed roller, operate the paper feed clutch with SIM 6-1, and keep the paper feed roller down as shown in the figure above for operation.

[12] FLASH ROM VERSION UPGRADE PROCEDURE

1. Preparation

Write the download data (the file with the extension dwl) to the main body of e-STUDIO161.

1) Necessary files for download
(Create a folder containing the following files on the PC to be used for the ROM upgrade.)

- Maintenance.exe (Maintenance software)
- ProcMode IG.mdl
- ProcMode IG.ini
- ProcMode IG.fmt

In the "Drivers" folder:
-Drivers $2 \mathrm{ZkXP} \backslash$ Mainte.inf
-Drivers 1 Win9xME\Mainte.inf
-Drivers\Win9xME\UsbScan.sys
<Note>
-The Download file(***.dwl) and the like that are to be downloaded should be copied, in advance, into the folder containing the maintenance program.
-When creating a folder for the maintenance tool in the PC, be sure that no lengthy folder name is included in the path.

(Example)	
Incorrect:	$\mathrm{c}: \backslash$ Maintenance Download Tool
Correct:	\(\mathrm{c}:
) Maintenance Tool	

2) Install the USB joint maintenance program
(See 3. Installation procedure on page 12-2).

2. Download procedure

1) Main body side:

Executable by performing the Service Simulation No. 49-01 (Flash Rom program-writing mode).
(A word "d" appears on the operation panel to denote the download mode status.)
2) Connect the PC and the main body with the download cable (USB cable).

3) PC side:

Boot the maintenance program. Select the model icon.

4) $P C$ side:

Confirm that the "Simulation Command List" tree is displayed on the maintenance program.
5) PC side:

When the message "the main body has not got started running" is displayed on the lowest area of the figure below after the "maintenance program" is started up, select the "File" and then "Reconnect" in the menu bar.

6) PC side:

Confirm a tree is displayed under the "Special (MCU)" on the maintenance program". (If no tree is displayed, confirm that the USB is connected and select the "Reconnect" (the above 5) again.)

Integration Maintenance Program		- \square^{-1}
Fie(E) Option(0) Help(H)		
$\begin{aligned} & \text { II Simulation Command List } \\ & \pm \text { Special (MCU) } \end{aligned}$		

7) PC side:

Double click "Special (MCU)" in the main tree item to develop the sub tree items, and double click "DWL Download" in the sub tree items.

8) PC side:

Specify the download file (*.dwl).

9) PC side:

The download file is specified, download is automatically performed. The "Automatic paper selection" lamp and "Start" lamp will blink approximately 15 seconds after the download file is specified.
10) PC side:

When the message below is displayed, download is completed.
Completion message: Download is complete.
Do not turn the copier power off until 'OFF' is displayed on the copier.

NOTE (Important):
-Be sure that the power is not turned off and the USB cable is not removed until the word "OFF" appears.
11) Main body side:

Wait until the word "OFF" appears on the operation panel.
The appearance of "OFF" indicates the completion of the download (writing into ROM).
Turn the power off.
12) After-process: Terminate the maintenance program, and turn on the power of the main body.

After the download (data transmission) has been completed, exit the software program. The USB cable can be removed at this point.

NOTE:
-For making a second connection with another machine, select the "File" and "Reconnect" in the menu bar on the maintenance program at the time of the USB being re-connected. Repeat the previous procedures from the above 5).

* Forbidden actions while downloading (Important)

Failure in the download concerned may not allow you to conduct the subsequent download procedures. Added care should be taken to avoid having the situation below arise while downloading.

- Switching off the main body of e-STUDIO161.
-Disconnecting the download cable (USB cable).

* If the above inhibit item occurs during downloading:

Turn OFF and ON the power.

1) If "d" (which means downloading) is displayed on the operation panel LED of the machine, perform downloading again.
2) If "d" (which means downloading) is not displayed on the operation panel LED of the machine, turn OFF the power, and press and hold the INTERRUPT key and the DUAL PAGE COPY key and turn ON the power. If, then, " d " (which means downloading) is displayed on the operation panel LED of the machine, perform downloading again. If "d" is still not displayed, the MCU must be replaced.

3. Installation procedure

A. USB joint maintenance program installation

Create the "Maintenance Tool" folder and copy the maintenance tool in it. The driver is installed by plug and play.

B. Installation procedure on Windows XP

1) Machine side:

Executable by performing the Service Simulation No. 49-01 (Flash Rom program-writing mode).
(A word "d" appears on the operation panel to denote the download mode status.)
2) Connect the machine and the PC with a USB cable.
3) Check that the following display is shown.

Select "Install from a list or the specific location" and press the NEXT button.

4) Select "Include this location in the serch". If the retrieval area does not include the folder which includes the maintenance tool driver (Mainte.inf), select "Browse"
If the folder path is properly shown, press the NEXT button to go to procedure 7).

5) Select the folder which includes the maintenance tool driver (Mainte.inf), and press the OK button.
(When the driver (Mainte.inf) is included in the

"C:\Maintenance Tool\Drivers\2kXP" folder:)

6) Check that the path to the folder which includes the maintenance tool driver (Mainte.inf) is shown, and press the NEXT button.

7)) Check that the following display is shown. Press the Continue Anyway button.

8) When installation is completed, the following display is shown. Press the Finish button.

The installation procedure (on Windows XP) is completed with the above operation.

C. Installation procedure on Windows 2000

1) Machine side:

Executable by performing the Service Simulation No. 49-01 (Flash Rom program-writing mode).
(A word "d" appears on the operation panel to denote the download mode status.)
2) Connect the machine and the PC with a USB cable.
3) Check that the new hardware search wizard is shown. Press the NEXT button.

4) Select "Serch for a suitable driver for my device" and press the NEXT button.

5) Select "Specify a location" and press the NEXT button.

6) Specify the folder which includes the maintenance tool driver and press the <OK> button.(Go to the procedure 8)
Press the <Browse> button, if not includes the maintenance tool driver.

Specify the path of the folder in which the maintenance tool driver (Mainte.inf) is included, and press <Open> button.

7) Check that the path to the folder which includes the maintenance tool driver (Mainte.inf) is properly displayed, and press the NEXT button. Create the "Maintenance Tool" folder in the C drive.
(When the driver (Mainte.inf) is included in the "C:Imaintenance Tool\Drivers\2kXP" folder:)

8) Press the NEXT button, and installation is started.

9) When installation is completed, the following display is shown. Press the Finish button.

The installation procedure of the joint maintenance program on Windows 2000 is completed with the above operation.

[13] ELECTRICAL SECTION

1.Block diagram

2.Circuit descriptions

A. Main PWB (MCU)

(1) Operation circuit
a. General

The operation circuit is composed of the key matrix circuit and the display matrix circuit.

b. Key matrix circuit

Select signals SELIN 1-3 are sent from the CPU of the MCU to the selector in the operation circuit.
The signals detecting OFF/ON of the key are sent to the CPU as KIN 1 2.

c. Display circuit

The display is controlled by sending the data signal from the CPU of the MCU, the clock signals, and the latch signals from the ASIC to the LED driver in the operation circuit.

(2) I/F circuit

a. General

The I/F circuit is composed of the USB driver and the IEEE1284 driver, and performs hard interface with the ASIC (MCU PWB).

b. USB circuit

With the USB driver, the differential signals (analog) of USB are converted into digital signal, which are sent to the ASIC. In the reverse procedure, interface between the ASIC (engine) and the host is performed.

c. IEEE1284 circuit

The IEEE1284 driver is used to perform interface between the ASIC (engine) and the host.

(3) Carriage unit

a. General

The carriage unit is provided with the CCD PWB, the inverter PWB, and the lamps. It scans documents and transfers AD-converted image data to the ASIC.
b. CCD PWB

The CCD on the CCD PWB employs the color image sensor uPD8861 of 5400 pixels x 3 lines, and scans documents in the main scanning direction in the resolution of 600dpi/US letter size.
Image data scanned by the CCD are inputted to the AFE (AD9826), and subject to CDS, amplification, and AD-conversion. Then digital data are outputted to the MCU PWB and to the ASIC, which performs image process of the digital data.

c. Lamp inverter PWB

The transformer is controlled by the lamp control signal from the MCU PWB. The transformer output controls lighting of the cool cathode ray tube.

B. DC power circuit

The DC power circuit directly rectifies the AC power and performs switching-conversion with the DC/DC converter circuit, and rectifies and smoothes again to generate a DC voltage.
The constant voltage control circuit is of $+5 \mathrm{VEN} .+24 \mathrm{~V}$ are of the non-control system by winding from the +5 VEN winding. As shown in fig (1), +24 V , and +5 V are provided with the ON/OFF function by external signals. +3.3 V is outputted from +5 VEN to the regulator IC. Refer to the block diagram, fig (1).

(1) Noise filter circuit

The filter circuit is composed of L and C. It reduces common noises and normal mode noises generated from the AC line.
The common noise means that generated in each line for GND. Its noise component is delivered through C001, C003, and C007 to GND.
The normal noise means that overlapped in the AC line or the output line. It is attenuated by C002, L001, C006, and L002. Refer to fig (2).

fig (2) Noise filter circuit
(2) Rush current prevention circuit and rectifying/ smoothing circuit

fig (3) Rush current prevention, rectifying/smoothing circuit
fig (3) Rush current prevention, rectifying/smoothing circuit Since the AC power is directly rectified, if there were not this rush current prevention resistor (TH001), an extremely large rush current would flow due to a charging current flowing through the smoothing capacitor C010 when turning on the power.
To prevent against this, the rush current prevention resistor TH001 is provided between the rectifying diode D002 and the smoothing diode C010, suppressing a rush current.
The rectifying/smoothing circuit rectifies a $50 / 60 \mathrm{~Hz}$ AC voltage with the rectifying circuit, and smoothes it with the smoothing capacitor C010.

(3) Inverter and control circuit (Flyback converter system)

This circuit is one-stone separate excitation DC-DC converter called flyback converter, as shown in fig (4).
When an electromotive voltage of IC is applied through D012, R005, and R006 to IC002, IC002 oscillates to conduct Q001.
As a result, a voltage is applied to the primary winding of the converter transformer (T001) and at the same time a voltage is generated in the driving winding of IC002 to operate IC002. Then IC002 turns ON/OFF Q001 at the frequency of about 70 KHz determined by R016.
Under the ON state, the voltage in the secondary winding is reversed to the diode D103 and no current flows through the secondary winding of T001.
Under the OFF state, the current flowing through the primary winding is in the same direction as the primary winding, conducting D103 and transmitting energy to the secondary winding. Refer to fig (4).

fig (5) Operation waveform of the flyback converter

The control circuit is subject to negative feedback from the secondary side as shown in fig (4). A photo coupler (PC002) is employed to insulate between the primary side and the secondary side to feed back the control signal to the primary side.
When the output voltage is increased by energy transmission from T001, the voltage detected by R109 and R111 is compared with the reference voltage of IC102. When it exceeds the reference voltage, the current flowing through IC102 (that is, the photo diode current of PC002) is increased and transmitted to the primary side. Then the potential at the feedback pin (2 pin) of IC102 is decreased to control Q001. Therefore, the change in the output voltage on the secondary side is passed through IC102 and PC002 to control Q001, stabilizing the output voltage.

(4) Overcurrent protection circuit (Primary side)

The inverter circuit of the primary side is connected with the current detection resistor R012. When an overcurrent occurs in the secondary side, the current flowing through the primary side inverter Q001 is increased. The current is detected by R012, and passed through R013 to IC002 overcurrent restricting pin (3 pin) to turn OFF Q002, shutting off all power. To resupply the power, turn off and on the power. Refer to fig (4).

(5) Rectifying/smoothing circuit (+5V)

fig (6) Rectifying/smoothing circuit
The high frequency pulse generated by the inverter circuit is decreased by the converter transformer, rectified by the high frequency diode D103, and smoothed by C103 and C104.

(A) -(B) Voltage waveform
\qquad
\qquad
fig (7) +5 V rectifying/smoothing circuit voltage waveform

3.Actual wiring diagram

ACTUAL WIRING DIAGRAM $1 / 6$

LEAD-FREE SOLDER

The PWB's of this model employs lead-free solder. The "LF" marks indicated on the PWB's and the Service Manual mean "Lead-Free" solder. The alphabet following the LF mark shows the kind of lead-free solder.

Example:

(1) NOTE FOR THE USE OF LEAD-FREE SOLDER THREAD

When repairing a lead-free solder PWB, use lead-free solder thread.
Never use conventional lead solder thread, which may cause a breakdown or an accident.
Since the melting point of lead-free solder thread is about $40^{\circ} \mathrm{C}$ higher than that of conventional lead solder thread, the use of the exclusive-use soldering iron is recommendable.

(2) NOTE FOR SOLDERING WORK

Since the melting point of lead-free solder is about $220^{\circ} \mathrm{C}$, which is about $40^{\circ} \mathrm{C}$ higher than that of conventional lead solder, and its soldering capacity is inferior to conventional one, it is apt to keep the soldering iron in contact with the PWB for longer time. This may cause land separation or may exceed the heat-resistive temperature of components. Use enough care to separate the soldering iron from the PWB when completion of soldering is confirmed.

Since lead-free solder includes a greater quantity of tin, the iron tip may corrode easily. Turn ON/OFF the soldering iron power frequently.
If different-kind solder remains on the soldering iron tip, it is melted together with lead-free solder. To avoid this, clean the soldering iron tip after completion of soldering work.
If the soldering iron tip is discolored black during soldering work, clean and file the tip with steel wool or a fine filer.
[1] PRODUCT OUTLINE 14-1
[2] SPECIFICATIONS 14-1
[3] UNPACKING AND INSTALLATION $14-2$
[4] EXTERNAL VIEW AND INTERNAL STRUCTURE 14-6
[5] OPERATIONAL DESCRIPTION 14-7
[6] DISASSEMBLY AND ASSEMBLY 14-7
[7] MAINTENANCE $14-9$
[8] ELECTRICAL SECTION 14-10
[9] PARTS ARRANGEMENT 14-13

1. PRODUCT OUTLINE

The 250-sheet paper feed unit is the optional paper feed cassettes for the digital copier, and they are the same structure as the 250-sheet cassette of the copier.
The combination of the copier and the paper feed cassette is as shown below:

2. SPECIFICATIONS

A. PAPER FEED UNIT

Model name	MY-1022
Paper feed step(s)	1-step
Paper feed capacity	250 sheets $\times 1$ step
Size detection	None (The paper size is set by the user program.)
Paper feed detection	Available
Paper feed size	A3, B4, A4, A4R, B5, B5R LG, LG, 8.5×13, LT, LT-R, $8 \mathrm{~K}, 16 \mathrm{~K}, 16 \mathrm{KR}$
Paper weight	$56 \sim 90 \mathrm{~g} / \mathrm{m}^{2}$ (15 ~ 24lbs)
Shipping size	AB series: A4 Inch series: LT
Size selection	User operation (Size setting by the user program) Japan: A3, B4, A4, A4R, B5, B5R Inch series: LD, LG, LT, LT-R EX AB series: A3, B4, A4, A4R Inch series foolscap area: LD, LG, 8.5×13, LT, LT-R $E X A B$ series foolscap area: A3, B4, A4, A4R, 8.5×13
Cassette detachment	Possible by the user
Heater	Available only in Japan model
Power source	Supplied from the machine.
External dimension (mm)	W: $590 \times \mathrm{D}: 471 \times \mathrm{H}: 88$ (Jut portion is not included.)
Weight	About 4.7 kg (With cassette)
Power consumption	5.6W

3. UNPACKING AND INSTALLATION

A. UNPACKING

B. INSTALLATION

Included parts

Part name	Quantity
Screw (Fixing plate)	8
Screw	2
Fixing plate	4
Paper size label	1

(1) Remove the document cover.

Lift the document cover from the copier and tilt it to the rear side to remove it.

(2) Remove the copier rear cabinet.

Remove the screw and remove the cover. Then, remove the five screws and remove the rear cabinet.

(3) Make a hole for connector.

Cut out the portion shown in the illustration with nippers or the like.

(4) Remove the rear cover of the paper tray.

Remove the rear cover from the second paper tray unit.

(5) Attach the copier to the paper tray unit.

*Remove the paper tray before attaching the copier.
Place the copier on the second paper tray unit and secure four fixing plates A using the eight screws (P Tite M 4).

(6) Remove the connection gear lock.

After attaching the copier, pull the red tag out in the direction of the arrow and remove the connection gear lock.

(7) Connect the connector.

Connect the optional relay harness contained in the second paper tray unit to the PWB of the copier.

- Optional relay harness

(8) Reattach the cover of the paper tray unit.

Reattach the rear cover to its original position and secure it with the two screws (S Tite M4).

(9) Reattach the rear cabinet of the copier.

Reattach the rear cabinet to its original position and secure it with the five screws (three M3 $\times 6$ screws, one M3 $\times 8$ screw, and one P Tite M4 screw).

Then attach the cover and secure it with the screw (M3 $\times 8$).

(10) Reattach the document cover.

Insert the hinge portions of the document cover into the mounting portions of the copier by holding the cover at an angle toward the rear side.
(11) Remove the fixture for packing the paper tray.

Rotate the fixture for packing that secures the paper pressure plate in the paper tray in the direction of the arrow to remove it.

(12) Set the paper tray side plate.

Hold the grip of the paper tray side plate to slide it and set it according to the paper size to be used.

(13) Fit the paper tray rear end plate.

Fit the paper tray rear end plate to the position of the paper size to be used.

- Insert the power plug of the copier to the outlet and turn on the main switch of the copier. Then, carry out the following procedure.
(14) Load paper into the paper tray.

Do not exceed the maximum height line.

(15) Check for center displacement.

Set an original on the document glass and copy it using a paper tray in the copier.

Then, copy an original using the attached optional paper tray.
*If the center of the copy image from the tray in the copier is different from that of the copy image from the optional paper tray, execute simulation 50-10 to carry out adjustment.

Note: To make the paper center shift adjustment and the lead edge adjustment, insert the power plug of the copier into the power outlet, turn on the power switch, and perform the following procedure.

(16) Perform the center shift adjustment.

Set a document on the document glass and make a copy.

* If the image center is shifted, perform the following procedure.

1. Execute SIM 50-10 with the key operations on the copier.

2. Turn on the Auto lamp and the lamp of a corresponding tray by Light and Dark key, Enter the set value with the keys on the operation panel to perform the center shift adjustment, make a copy again, and check that the center is not shifted.

- When the set value is increased, the image is shifted to the rear side.

- When the set value is decreased, the image is shifted to the front side.

After completion of the adjustment, press the ©/ \otimes key to cancel the mode.

(17) Perform the lead edge adjustment.

Set a document on the document glass, and make a copy.

1. Execute SIM 50-1 with the key operations on the copier.

2. Turn on the Auto lamp and the lamp of a corresponding tray by Light and Dark key, Enter the set value with the keys on the operation panel and make a copy to check that the lead edge is within the specified range.

- When the set value is increased, the copy image moves forward.
- When the set value is decreased, the copy image moves backward.

After completion of the adjustment, press the ©/ \otimes key to cancel the mode.

(18) Changing a tray's paper size setting

Follow these steps to change a tray's paper size setting.
Note:

- The paper size setting cannot be changed when the machine has stopped temporarily due to running out of paper or a misfeed, or during interrupt copying.
- During printing (even in copy mode), the paper size setting cannot be changed.
- Invoice (5-1/2" x 8-1/2") size paper can only be selected in upper paper tray.
- Do not load paper that is a different size than the paper size setting. Copying will not be possible.

1. Hold down the [PAPER SIZE ENTER] key for more than 5 seconds to set the selected paper size.

The currently selected paper feed location indicator will blink and the corresponding paper size (which is currently set) indicator will light steadily. All other indicators will go out.

2. Use the [TRAY SELECT] key (\square) to select the paper tray for which you wish to change the paper size setting.

Each time the [TRAY SELECT] key (\square) is pressed, a paper tray will be indicated with a blinking paper feed location indicator.

3. Use the [ORIGINAL SIZE ENTER] key to select the paper size.

The indicator of the selected paper size lights up.

4. Pull the cassette until it stops.

5. Depress the rotation plate.

6. Close the cassette.

7. Press the [START] key (Δ) and then the [PAPER SIZE ENTER] key.

To change the paper size setting of another tray, repeat steps 2 to 3 after pressing the [START] key (\square).

Note: Affix the paper size label for the paper size selected in step 3 to the label position on the right end of the tray.

4. EXTERNAL VIEW AND INTERNAL STRUCTURE

A. EXTERNAL VIEW

No.	Name	No.	Name
1	Paper feed tray	2	1-step paper feed right cover

B. INTERNAL STRUCTURE

Sensors and detectors

No.	Code	Name	Type	Function, operation	Remark
1	DRS1	Door open/close sensor	Photo transmission	Detects door open/close.	
2	PPD1	Paper entry sensor	Photo transmission	Detects paper transport.	
3	CSS1	Paper empty sensor	Photo transmission	Detects paper presence/empty.	
4	CASS1	Cassette detection SW	Contact	Detects cassette installation.	
5	FSOL1	Transport solenoid	DC solenoid	Transports paper. (for clutch)	
6	PSOL1	Paper feed solenoid	DC solenoid	Feeds paper. (For clutch)	
7	PWB	Interface PWB	-		

5. OPERATIONAL DESCRIPTION

A. PAPER TRANSPORT PATH

B. OPERATIONAL DESCRIPTIONS

The operations are controlled by the main body of the copier. the paper feed roller (semi-circular roller) and the transport roller are driven by the gear of the copier.
Paper is separated by the paper feed roller and the separation pawl, and detected by the PF sensor, then transported to the Resist roller by the transport roller.

No.	Name	Operation
1	Paper feed roller	Picks up paper.
2	Separation pawl	Prevents against double feed of paper.
3	Transport roller	Transports paper.
4	Paper entry sensor	Detects paper transport.
5	Resist roller	Makes synchronization between the paper lead edge and the image lead edge.

6. DISASSEMBLY AND ASSEMBLY

A. REAR COVER

B. PAPER FEED UNIT SECTION

C. PAPER FEED SOLENOID, TRANSPORT SOLENOID

D. TRANSPORT ROLLER GEAR SECTION

F. PAPER FEED ROLLER CLUTCH

Note: When asembling the paper feed roller cluch, fit and insert section $A(D$ cut into the shaft as shown in the figure.

G. PAPER FEED ROLLER

*Be sure to rotate this part 180 degrees(It turns upward) after attachment.

7. MAINTENANCE

No.	Name	Work item	When service call	Remark
1	Paper feed roller PA ass'y *1	Cleaning	\bigcirc	
2	Transport roller	Cleaning	\bigcirc	

[^1]

Note: For disassembly and assembly of the paper feed roller and the transport roller, refer to [6] DISASSEMBLY AND ASSEMBLY.

9. PARTS ARRANGEMENT

[PARTS SURFACE]

[SOLDER SURFACE]

[1] PRODUCT OUTLINE 15-1
[2] SPECIFICATIONS 15-1
[3] UNPACKING AND INSTALLATION 15-1
[4] EXTERNAL VIEW AND INTERNAL STRUCTURE 15-4
[5] OPEREATIONAL DESCRIPTIONS 15-5
[6] ADJUSTMENTS 15-7
[7] DISASSEMBLY AND ASSEMBLY 15-8
[8] MAINTENANCE 15-13
[9] ELECTRICAL SECTION 15-14

1. PRODUCT OUTLINE

This machine is a duplex document auto feeder attached to a digital copier.

It feeds originals automatically to allow continuous copying.

2. SPECIFICATIONS

Model Name	MR-2015
Document set direction	Face up
Document set position	Right/Center reference
Document transport system	Sheet through type
Document feed sequence	Top take-up feed
Document size	AB series: A3 ~ A5 Inch series: LD ~ ST
Document weight	56 ~ 90g/m², 15 ~ 24lbs
Document set quantity	Max. 40 sheets (Stack range: within 4 mm) ($90 \mathrm{~g} / \mathrm{m}^{2}$: Set capacity $=30$ sheets)
Dimensions	583 mm (W) $\times 435 \mathrm{~mm}$ (D) $\times 133 \mathrm{~mm}$ (H)
Weight	About 5.0 kg
Power source	Supplied from the copier. (DC 24V, 5V)
Power consumption	21W
Document size detection	On the document feed tray
Detection size	Japan: A3, B4, A4, A4R, B5, B5R, A5 Inch series: LD, LG, LT, LT-R, ST EX AB series: A3, B4, A4, A4R, A5, B5, B5R, A5R
Mixture of different document sizes	Mixture paper feed: Not available Random paper feed: Not available
Document reverse	Not allowed
Display section (LED)	None
Document exchange speed	$S \rightarrow S$, 16 sheets/min (main unit:16ppm) $S \rightarrow S, 20$ sheets/min (main unit:20ppm)

3. UNPACKING AND INSTALLATION

A. Unpacking

For unpacking, refer to the figure below.

B. Installation

Turn the main switch of the copier to the "OFF" position and then remove the power plug of the copier from the outlet.
(1) Remove the document cover.

Lift the document cover from the copier and tilt it to the rear side to remove it.

(2) Remove the right cabinet.

Remove the five screws and remove the right cabinet.

(3) Remove the document glass and the right document
glass holder.

Remove the four screws, remove the document glass from the copier, and then remove the right document glass holder.

(4) Attach the ADF glass holder.

Fit the ADF glass holder to the document glass.
Attach the document glass to the copier and fix it with the four screws.

(5) Attach the right cabinet.

Reattach the right cabinet to its original position and fix it with the five screws.

(6) Cut out the cut-out portion.

Cut out the cut-out portion of the rear cabinet with nippers or the like. At this time, be careful about the orientation of the nippers so that the cut plane of the rear cabinet is flat.

(7) Attach the automatic document feeder.

Insert the hinge portions of the document feeder into the mounting portions of the copier by holding the feeder at an angle toward the rear side.

(8) Connect the relay connector.

Connect the harness of the automatic document feeder to the connector of the copier and tighten the screws on the connector.

(9) Remove the filament tape.

Remove the filament tape located in the positions shown in the illustration.

(10) Insert the power plug of the copier to the outlet and turn on the main switch of the copier.
(11) Adjust the white compensation pixels.

- Open the automatic document feeder, execute simulation 63-7 referring to the service manual, and adjust the automatic white compensation pixels of the document feeder.

(12) Check the copy magnification ratio.

- Set an original on the document glass and copy it.

Then, set an original in the document feeder tray and copy it.

- If the magnification ratio of the copy from the document feeder is different from that of the copy from the document glass, execute simulation 48 - 5 to carry out adjustment referring to the service manual.

(13) Check the center displacement.

- Set an original on the document glass and copy it.

Then, set an original in the document feeder tray and copy it.

- If the center of the copy image from the document feeder is different from that of the copy image from the document glass, execute simulation 50-12 to carry out adjustment.

(14) Check the top end position.

- Set an original on the document glass and copy it.

Then, set an original in the document feeder tray and copy it.

- If the top end position of the copy image from the document feeder is different from that of the copy image from the document glass, execute simulation $50-06$ to carry out adjustment.

4. EXTERNAL VIEW AND INTERNAL STRUCTURE

A. External view

No.	Name
1	Document set tray
2	Document guide
3	Document feed section cover
4	Document transport section cover
5	Document exit section

B. Internal structure

Sensor, detector, etc.

No.	Code	Name	Type	Function/Operation	
1	W0	Document set sensor	Photo transmission	Detects presence of documents.	
2	COVER	Open/close sensor	Photo transmission	Detects open/close of the paper feed unit.	
3	W1	Document width sensor (A4R, LT-R, A5)	Photo transmission	Detects the document width on the tray.	
4	W2	Document width sensor (B4, B5)	Photo transmission	Detects the document width on the tray.	
5	W3	Document width sensor (WL, TR, A5R, A4, LT)	Photo transmission	Detects the document width on the tray.	
6	PSOL	Pickup solenoid	-	-	
7	PAPER	Paper entry sensor	Photo transmission	Detects presence of documents.	
9	CLH	Transport clutch	-	-	
10	MOT	ADF motor	Stepping motor	Drives document feed on the tray, trans- port, and paper exit roller.	
11		Interface PWB	Photo transmission	Detects the document length on the tray.	
12	L1	Document length detection SW (Short)	Photo transmission	Detects the document length on the tray.	
13	L2	Document length detection SW (Long)	Photo transmission	Detects the ADF float.	
14	COVER OPEN	Book sensor	Photo transmission	Detects presence of documents.	
15	PO	Paper exit sensor			

5. OPEREATIONAL DESCRIPTIONS

A. Major parts of the paper feed section

No.	Part name	Operation	Note
1	Document length sensor (L2)	Detects the document length on the tray.	
2	Document length sensor (L1)	Detects the document length on the tray.	
3	Document set sensor (W0)	Detects presence of docu- ments.	
4	Document width sensor (W1, W2, W3)	Detects the document width.	
5	Pickup roller	Picks up documents.	
6	Paper feed roller	Feeds and transports docu- ments.	
7	Paper entry sensor (PAPER)	Detects transport of docu- ments.	
8	PS roller	Makes synchronization between the document lead edge and the image lead edge.	
9	PS follower roller	Makes synchronization between the document lead edge and the image lead edge.	
10	Transport roller	Transports documents.	
11	Transport follower roller	Transports documents.	
12	Paper exit sensor (PO)	Detects transport of docu- ments.	
13	Paper exit follower roller	Discharges documents.	
14	Paper exit roller	Discharges documents.	
15	Reverse gate	Opens/closes the document reverse path.	

B. Out line of operations

1) Document set (Document set sensor ON)
\downarrow
2) Document size detection (Document width sensors W1, W2, W3 detect the document width, and document length sensors L1, L2 detect the document length.)
3) Copier COPY key ON
\downarrow
4) ADF motor ON
\downarrow
5) Pickup solenoid ON
\downarrow
6) Pickup roller and paper feed roller rotation
\downarrow
7) Paper entry sensor detects the document presence.
\downarrow
8) PS roller rotation
\downarrow
9) Copying (Front surface of document)
\downarrow
10) Transport roller rotation
\downarrow
11) Paper exit roller rotation
\downarrow
12) Documents are fed to the paper exit tray.
\downarrow
13) Next document \rightarrow (YES) \rightarrow Go to 4).
\downarrow (NO)
14) ADF motor OFF

C. Document size detection

1) Document size detection with the document set tray

When documents are set on the document set tray in the auto selection mode of paper/copy magnification ratio, the document size is detected and paper and the copy magnification ratio are automatically selected. When different sizes of documents are set, the max. size is detected.
The document width is detected by the document width sensors (W1, W2, W3), and the document length is detected by the document length sensors (L1, L2) to identify the document size. Judgement of the document size is made in a certain timing after detecting the document with the document set sensor (W0).

	Document set size and set direction	Document width sensor			Document length sensor	
		W1	W2	W3	L1	L2
$A B$ series	A5	\bigcirc	\bullet	\bullet	\bullet	\bullet
	B5	\bigcirc	\bigcirc	\bullet	\bullet	-
	A5R	\bullet	\bullet	\bullet	\bullet	\bullet
	A4	\bigcirc	\bigcirc	\bigcirc	\bullet	\bullet
	B5R	\bullet	\bullet	\bullet	\bigcirc	\bullet
	A4R	O	\bullet	-	\bigcirc	\bullet
	8.5 " $\times 13$	\bigcirc	\bullet	\bullet	\bigcirc	\bigcirc
	B4	\bigcirc	\bullet	\bullet	\bigcirc	\bigcirc
	A3	\bigcirc	O	\bigcirc	O	O
Inch series	ST	\bigcirc	\bullet	\bullet	\bullet	-
	ST-R	\bullet	\bullet	\bullet	\bullet	-
	LT	\bigcirc	\bigcirc	0	\bullet	\bullet
	LT-R	\bigcirc	\bullet	\bullet	\bigcirc	\bullet
	8.5 " $\times 13^{\prime \prime}$	\bigcirc	\bullet	\bullet	\bigcirc	\bigcirc
	LG	\bigcirc	\bullet	\bullet	\bigcirc	\bigcirc
	LD	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Note: Detection sensor ON: O, OFF:

6. ADJUSTMENTS

A. Auto white correction pixel adjustment

[Function]

The white correction start pixel position is automatically adjusted. This adjustment is performed after the lens unit is replaced.

[Operation]

Open the ADF unit and press the [OK] key. 7-segment indicates the order number of the pixel of the white sheet for ADF exposure correction in the ADF position. It will display on 7-segment, if values are 93-299, and data are written into the EEPROM. It will display on 7-segment, it values are 0-92 or 230-999, and data are not written into the EEPROM. It will display "--" on 7-segment, it values is 1000 or larger, and data are not written into the EEPROM.. [CA] key: Cancels the test command. [Interruption] key: Shifts to the sub code entry menu. The ADF white correction start pixel = Displayed pixel position - 34 • Interruption is inhibited during execution. If the simulation is executed with the ADF unit closed, an error is resulted. •During execution,"EXEC" is highlighted

B. Magnification ratio adjustment

Note: • When performing this adjustment, check that the CCD unit is properly installed.

- When performing this adjustment, check that the OC mode adjustment in copying is completed.

1) Place a scale on the document table as shown below, and make a normal copy to make a test chart.

Note: Since the printed paper is used as the test chart, place the scale in parallel to both sides.
2) Set the test chart to the ADF and make a normal copy.
3) Compare the copy and the test chart.

If an adjustment is needed, perform the following procedures.
4) Execute SIM 48-5.
5) The current correction value is displayed on the display section in two digits.
6) Enter the set value, and press the START key.

The entered correction value is stored and a copy is made.
7) Change the TEXT mode.

The TEXT lamp lights up, and the current correction value of the back surface sub scanning direction magnification ratio is displayed on the display section in two digits.
8) Enter the set value, and press the START key.

The entered correction value is stored and a copy is made.

<Adjustment specifications>

Mode	Spec	SIM	Set value	Set range
Magnification ratio adjustment	Normal: $\pm 1.0 \%$	SIM 48-5 AE: Surface TEXT: Back	Add 1: 0.1% increase Reduce 1: 0.1% decrease	$1 \sim 99$

C. Document off center adjustment

Note: When performing this adjustment, check that the paper off-center is properly adjusted.

1) Set the center position adjustment test chart (made by yourself) on the ADF.
<Adjustment specifications>
Draw a line in the center of paper. (In the scanning direction)
2) Make a normal copy from the manual feed tray, and compare the copy and the test chart.
If an adjustment is required, perform the following procedures.
3) Execute SIM 50-12.
4) The current off-center adjustment value is displayed on the display section in two digits.
5) Enter the set value and press the START key.

The entered correction value is started and a copy is made.
<Adjustment specifications>

Mode	Specification	SIM	Set value	$\begin{array}{c}\text { Set } \\ \text { range }\end{array}$		
$\begin{array}{l}\text { Document } \\ \text { off-center }\end{array}$	$\begin{array}{l}\text { Simplex: } \\ \text { Center } \pm 3.0 \mathrm{~mm} \\ \text { Duplex: } \\ \text { Center } \pm 3.5 \mathrm{~mm}\end{array}$	$\begin{array}{ll}\text { AE: Surface } \\ \text { TEXT: Back }\end{array}$	$\begin{array}{l}\text { Add 1: } \\ \begin{array}{l}\text { 0.1mm shifted to } \\ \text { R side. }\end{array} \\ \text { Reduce 1: } \\ 0.1 \mathrm{~mm} \text { shifted to L }\end{array}$			
side.					$]$	
:---						

D. Image lead edge position adjustment

1) Set a scale on the OC table as shown below.

Note: Since the printed paper is used as the test chart, place the scale in parallel to both sides.
2) Make a copy, and use the copied paper as the document and make a copy from ADF again.
3) Check the copied paper. If an adjustment is required, perform the following procedures.
4) Execute SIM 50-6.
5) Set the ADF lead edge position set value so that the image similar to the adjusted image at the OC image lead edge position described previously is printed.
<Adjustment specifications>

Adjustment mode	SIM	Set value	Specification	Set range
Image lead edge position	SIM 50-6	1step: 0.1mm shift	Lead edge void: $1 \sim 4 \mathrm{~mm}$ Image loss: 3 mm or less	$1 \sim 99$

7. DISASSEMBLY AND ASSEMBLY

A. External fitting section

Note: Turn the paw in the arrow direction.

B. Paper feed unit section

(1) Paper feed unit

(2) Document feed section cover

(3) Sensor PWB

(4) Pickup solenoid

Note: Remove section A of the pickup solenoid from the solenoid arm groove.
When assembling, adjust the spacing between the clutch latch and sleeve with the pick-up solenoid pulled. The size should be the distance from the tip of the clutch latch and the root of the clutch sleeve latch.

(5) Clutch gear ass'y

(6) Pickup roller ass'y

Note: When assembling the pickup roller ass'y 4, check that rib A is on the rib of the solenoid arm.

(7) Pick up roller, paper feed roller

C. Document tray section

(1) Document tray

(2) Rack cover

(3) Document length sensor SW

D. Drive frame section
(1) Book sensor

(2) Drive frame unit

(3) Drive frame ass'y and drive belt

(4) ADF motor

E. Transport section

(1) Clutch

Note: When assembling, check that the rib is in the clutch groove A and fix it with E-ring.

(2) Transport roller gear

(3) Transport roller

Note: Note that the spring will come off when removing.

(4) PS roller

(5) Paper feed paper guide lower

Note: When assembling, check that the paper feed paper guide lower is securely set to rib A and boss B.

(6) Paper feed paper guide upper

(7) Paper exit roller

F. Hinge L

Note: When assembling the hinge L , reference is based on the mark of base tray and the center line of the 5 lines of the hinge L extended horizontally.

8. MAINTENANCE

A. Maintenance parts

No.	Name	Work item	Service call	Remark
1	Pickup roller	Cleaning	\bigcirc	
$2-1$	Separation unit	Cleaning	\bigcirc	Replace when worn down.
$2-2$	Front separation sheet	Cleaning	\bigcirc	
3	Paper feed roller	Cleaning	\bigcirc	
4	PS roller	Cleaning	\bigcirc	
5	Transport roller	Cleaning	\bigcirc	
6	Paper exit roller	Cleaning	\bigcirc	

Note: When performing maintenance, refer to [7] DISASSEMBLY AND ASSEMBLY.

D. Parts arrangement

(1) Interface PWB
a. Parts surface

CN7(B3B-PH-K-S)

1	24 V 1
2	N.C.
3	/CLH

b. Solder surface

(2) Sensor PWB

Trademark acknowledgments

Windows and Windows NT are trademarks of Microsoft Corporation in the U.S.A. and other countries.
IBM and PC/AT are trademarks of International Business Machines Corporation. PCL is a trademark of Hewlett-Packard Company.
Pentium is a registered trademark of Intel Corporation.
All other trademarks and copyrights are the property of their respective owners.

TOSHIBA

TOSHIBA TEC CORPORATION

1-1, KANDA NISHIKI-CHO, CHIYODA-KU, TOKYO, 101-8442, JAPAN

[^0]: *1 On models with a ADF.
 *2 On model with the two trays.

[^1]: ${ }^{* 1}:$ Replace $=150 \mathrm{~K}$

